[1]王楠,曹菡. 基于Geo-tagged照片的旅游推荐研究[J].计算机技术与发展,2016,26(10):123-126.
 WANG Nan,CAO Han. Study on Travel Recommendation Based on Geo-tagged Photos[J].,2016,26(10):123-126.
点击复制

 基于Geo-tagged照片的旅游推荐研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年10期
页码:
123-126
栏目:
应用开发研究
出版日期:
2016-10-10

文章信息/Info

Title:
 Study on Travel Recommendation Based on Geo-tagged Photos
文章编号:
1673-629X(2016)10-0123-04
作者:
 王楠曹菡
 陕西师范大学 计算机科学学院
Author(s):
 WANG NanCAO Han
关键词:
 Geo-taggedDBSCAN 用户偏好协同过滤信任网络
Keywords:
 Geo-taggedDBSCANuser preferencescollaborative filteringtrust  network
分类号:
TP39
文献标志码:
A
摘要:
 在Web2.0时代,随着智能手机、数码相机和GPS导航系统等电子产品的广泛普及和社交网站的迅速发展,涌现出各种UGC( User Generated Content)形式的数据。同时,人们喜欢以图片或文字方式在网络上分享自己旅游的所见所闻,社交媒体数据通常包括文本标签、地理位置(经纬度)和拍摄时间等信息,这就为研究旅游推荐提供了可靠数据。使用Flickr网站上Geo-tagged照片数据集,采用基于密度的DBSCAN聚类算法对照片的经纬度进行聚类,结合TF-IDF算法为兴趣点命名,得到游客在西安的旅游兴趣点,然后综合考虑用户对兴趣点偏好和兴趣点属性,利用改进的协同过滤推荐算法为用户提供旅游推荐服务。实验结果表明,该算法能够有效提高系统的推荐精度。最后构建了用户信任网络,提高了推荐系统的信任度和满意度。
Abstract:
 In the Web2. 0 era,with the popularity of smart phones,digital cameras and GPS navigation systems and other portable elec-tronic products widely available and the rapid development of social network,all kinds of UGC ( User Generated Content) are emerging by the social networking sites. Meanwhile,more and more tourists tend to share their travel seen and heard on the network with pictures or texts,and those social media data usually contain textual labels,spatial location ( in terms of latitude and longitude) ,taken time and other information,which provide truly reliable data. Therefore,the Geo-tagged photo from Flickr is used as data sources,applying the density-based clustering algorithm DBSCAN to cluster latitude and longitude of photos,and getting Points Of Interest ( POIs) in Xi’ an with TF-IDF algorithm. The travel recommendation is provided using improved collaborative filtering algorithm,which considers both user pref-erences and attributes of POI. The results show that it can improve the recommendation accuracy effectively. Finally the trust network for users is built to improve the trust and satisfaction of the recommendation system.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(10):47.

更新日期/Last Update: 2016-11-29