[1]冯春,吴小锋,尹飞鸿,等. 基于局部特征匹配的双焦单目立体视觉深度估计[J].计算机技术与发展,2016,26(10):55-59.
 FENG Chun,WU Xiao-feng,YIN Fei-hong,et al. Depth Estimation for Bifocal Monocular Stereo Vision Based on Local Image Feature Descriptors Matching[J].,2016,26(10):55-59.
点击复制

 基于局部特征匹配的双焦单目立体视觉深度估计()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年10期
页码:
55-59
栏目:
智能、算法、系统工程
出版日期:
2016-10-10

文章信息/Info

Title:
 Depth Estimation for Bifocal Monocular Stereo Vision Based on Local Image Feature Descriptors Matching
文章编号:
1673-629X(2016)10-0050-05
作者:
 冯春吴小锋尹飞鸿杨名利
 常州工学院 机械与车辆工程学院
Author(s):
 FENG ChunWU Xiao-fengYIN Fei-hongYANG Ming-li
关键词:
 双焦成像图像匹配局部特征深度估计SSURF
Keywords:
 bifocal imagingimage matchinglocal featuredepth estimationSSURF
分类号:
TP391
文献标志码:
A
摘要:
 针对基于双焦单目立体视觉的图像焦距变化和相似图像误匹配率高的问题,提出利用局部特征描述子结合“两步匹配法”进行图像匹配。将局部特征描述子引入基于双焦单目立体视觉系统中进行图像匹配。提出“两步匹配法”获取特征点集合,即交换小焦距与大焦距图像匹配顺序获取两个特征点集合,求交运算得到新的集合,并计算深度值。实验结果表明,SSURF( Simplified Speed-Up Robust Feature)匹配速度最快,获取的深度值与理想的深度值误差较小,从而验证了将局部特征用于双焦单目立体视觉进行图像匹配从而完成深度估计是可行的。
Abstract:
 Focused on the issue of the focal length change of image based on the bifocal monocular stereo vision and the high rate of false matching of similar image,the use of local feature descriptors and‘Two-step Matching Method’ for image matching is proposed. Local feature descriptors are used to complete the image feature matching in the monocular stereo vision system and compared with each other.‘Two-step matching method’ is used to obtain the set of feature points,and two sets of feature points are obtained by changing the order of two images,the small focal length one and the large focal length one,and then a new set can be got by an intersection operation be-tween the above two point sets,thereby the depth estimation computation could be completed by the new set. Experimental results show that the SSURF has the fastest matching rate,and the depth value obtained by the above method is approximately equivalent to the ideal depth value,so it verifies that the local feature descriptors used for image matching based on bifocal monocular stereo vision to compute the depth estimation is feasible.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(10):47.

更新日期/Last Update: 2016-11-25