[1]周丰,王未央. 基于最小最大模块化集成特征选择的改进[J].计算机技术与发展,2016,26(09):149-153.
 ZHOU Feng,WANG Wei-yang. Improvement of Multi-classification Integrated Selection Based on Min-Max-Module[J].,2016,26(09):149-153.
点击复制

 基于最小最大模块化集成特征选择的改进()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年09期
页码:
149-153
栏目:
智能、算法、系统工程
出版日期:
2016-09-10

文章信息/Info

Title:
 Improvement of Multi-classification Integrated Selection Based on Min-Max-Module
文章编号:
1673-629X(2016)09-0149-05
作者:
 周丰王未央
 上海海事大学 信息工程学院
Author(s):
 ZHOU FengWANG Wei-yang
关键词:
 特征选择集成学习最小最大模块化策略不平衡数据
Keywords:
 feature selectionintegrated learning Min-Max-Module(M3) Imbalance Data Sets (IDS)
分类号:
TP391
文献标志码:
A
摘要:
 随着数据规模的扩大,单个弱分类器的准确率已经无法很好地对未知样本进行预测,为此提出了集成学习。在集成学习与分类器结合的同时,集成的思想同样被用到了特征选择中。从提高对样本预测的准确率的角度出发,提出一种基于最小最大模块化(Min-Max-Module,M3)的策略。它同时将集成学习应用到了特征选择算法和分类器中,并对比了四种集成策略以及三种不同的分类方法。结果表明,提出的方法在大多情况下能取得不错的效果,并且能很好地处理不平衡的数据集。
Abstract:
 With the expansion of the data size,a single weak classifier has been unable to predict unknown samples accurately. To solve this problem,an integrated learning is proposed. Combined the integrated learning and classification,the idea of integration is also used in the feature selection at the same time. For the increase of sample prediction accuracy,a strategy based on Min-Max-Module (M3) is put forward. It makes integrated learning applied to feature selection algorithms and classifier,and compares four kinds of integration strategies as well as three different classification methods. The results show that the proposed method can be able to achieve good results in most ca-ses,and can well handle imbalanced data sets.

相似文献/References:

[1]刘利 何先平 袁文亮.股票趋势预测中Wrapper方法的研究与应用[J].计算机技术与发展,2010,(01):209.
 LIU Li,HE Xian-ping,YUAN Wen-liang.Research and Application of Wrapper Approach to Stock Trend Prediction[J].,2010,(09):209.
[2]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(09):21.
[3]张家柏 王小玲.基于聚类和二进制PSO的特征选择[J].计算机技术与发展,2010,(06):25.
 ZHANG Jia-bai,WANG Xiao-ling.A Novel Algorithm Based on K-Means Clustering and Binary Particle Swarm Optimization[J].,2010,(09):25.
[4]冯甲策 叶明 王惠文.基于Gram—Schmidt过程的支持向量机降维方法[J].计算机技术与发展,2009,(11):7.
 FENG Jia-ce,YE Ming,WANG Hui-wen.Dimension Reduction Method of Support Vector Machine Based on Gram- Schmidt Process[J].,2009,(09):7.
[5]林伟 柳荣其 徐熙.邮件过滤中一种改进的特征选择方法研究[J].计算机技术与发展,2009,(01):84.
 LIN Wei,LIU Rong-qi,XU Xi.Improvement of Feature Selection Algorithm in Spam Filtering[J].,2009,(09):84.
[6]刘毅 张月琳.基于Agent的邮件过滤与个性化分类系统设计[J].计算机技术与发展,2009,(02):66.
 LIU Yi,ZHANG Yue-lin.Design of a Mail Filter and Personalized Classification System Based on Agent[J].,2009,(09):66.
[7]陈素萍 谢丽聪.一种文本特征选择方法的研究[J].计算机技术与发展,2009,(02):112.
 CHEN Su-ping,XIE Li-cong.Research on Document Feature Selection[J].,2009,(09):112.
[8]段震 王倩倩 张燕平 张铃.覆盖算法下文本分类特征选择的研究[J].计算机技术与发展,2008,(11):29.
 DUAN Zhen,WANG Qian-qian,ZHANG Yan-ping,et al.Study on Feature Selection of Text Classification in Cross Cover Algorithm[J].,2008,(09):29.
[9]王希雷.基于Rough集理论的车牌汉字特征提取[J].计算机技术与发展,2007,(06):26.
 WANG Xi-lei.Car Plate Chinese Character Feature Extraction Based on Rough Set Theory[J].,2007,(09):26.
[10]董梅 胡学钢.基于多特征选择的中文文本分类[J].计算机技术与发展,2007,(07):117.
 DONG Mei,HU Xue-gang.Text Categorization Based on Multiple Features Selection[J].,2007,(09):117.
[11]姚明海[],王娜[],李劲松[]. 一种新的基于特征选择的虹膜识别方法[J].计算机技术与发展,2014,24(12):96.
 YAO Ming-hai[],WANG Na[],LI Jin-song[]. A Novel Iris Recognition Method Based on Feature Selection[J].,2014,24(09):96.
[12]王园萍,殷洪友. 基于矩阵分数范数的人脸识别方法[J].计算机技术与发展,2015,25(04):22.
 WANG Yuan-ping,YIN Hong-you. Face Recognition Method Based on Fractional Matrix Norm[J].,2015,25(09):22.
[13]梁天超[][],荆晓远[],姚永芳[],等. 基于加权RFE-Bayes方法的软件缺陷预测模型[J].计算机技术与发展,2015,25(10):131.
 LIANG Tian-chao[][],JING Xiao-yuan[],YAO Yong-fang[],et al. A Prediction Model for Software Defect Based on Weighted RFE-Bayes[J].,2015,25(09):131.
[14]李春生,邸京华,李少龙,等. 时序化生产预警有效影响因子的获取方法研究[J].计算机技术与发展,2016,26(07):122.
 LI Chun-sheng,DI Jing-hua,LI Shao-long,et al. Research on Acquisition Method of Effective Impact Factors in Production Early Warning by Time Series[J].,2016,26(09):122.
[15]张淑雯,刘效武,孙雪岩. 基于多源融合的网络安全态势层次感知[J].计算机技术与发展,2016,26(10):77.
 ZHANG Shu-wen,LIU Xiao-wu,SUN Xue-yan. Hierarchical Awareness of Network Security Situation Based on Multi-source Fusion [J].,2016,26(09):77.
[16]李策,王保云,高浩. 基于自适应粒子群算法的特征选择[J].计算机技术与发展,2017,27(04):89.
 LI Ce,WANG Bao-yun,GAO Hao. Feature Selection Based on Adaptive Particle Swarm Optimization[J].,2017,27(09):89.

更新日期/Last Update: 2016-10-26