[1]徐芸芝,邵曦. 基于MT-LDA的音乐标签主题检索[J].计算机技术与发展,2016,26(07):200-204.
 XU Yun-zhi,SHAO Xi. Music Tags Topic Retrieval Based on MT-LDA[J].,2016,26(07):200-204.
点击复制

 基于MT-LDA的音乐标签主题检索()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年07期
页码:
200-204
栏目:
应用开发研究
出版日期:
2016-07-10

文章信息/Info

Title:
 Music Tags Topic Retrieval Based on MT-LDA
文章编号:
1673-629X(2016)07-0200-05
作者:
 徐芸芝邵曦
 南京邮电大学 通信与信息工程学院
Author(s):
 XU Yun-zhiSHAO Xi
关键词:
 音乐信息检索主题类别关键词检索MT-LDA 模型
Keywords:
 music information retrieval topic categorykeywords retrieval MT-LDA model
分类号:
TP31
文献标志码:
A
摘要:
 随着协同标注功能的普及,用户可以通过对自己感兴趣的音乐进行标注从而实现个性化的分类管理,因此音乐共享系统中的社会化标签已成为互联网的重要资源。考虑到社会化标签的特性及其对音乐信息检索系统的影响并综合考虑了用户的检索行为、歌词和音乐标签,利用MT-LDA方法对标签进行聚类以获取主题类别,从而进行分析得出检索主题,提高音乐信息检索系统的效率和性能。实验结果表明:在没有属性数据信息的检索情况下,基于标签主题的MT-LDA检索模型相比于基于标签关键词检索模型,尤其是在音乐标签稀疏和非正规的情况下,在一定程度上更能够提高音乐信息检索性能。
Abstract:
 Music sharing systems with collaboratively tagging function have been important parts on the Internet. They make the system users annotate and categorize their own interests and thoughts about the resources possible. Considering the characteristics of social tagging and its influence on Music Information Retrieval ( MIR) system,MT-LDA method by jointly considering lyrics,tags and searching be-havior can be used to analyze collaboratively generated tags and the topic category of tags to catch the retrieval topic,so as to improve the efficiency and performance of MIR system. The experiment shows that MT-LDA retrieval model based on tags topic performs better than keywords retrieval model based on tags into improving the MIR system performance especially tags for tracks are extremely sparse and in-formal,when retrieval information have no attribute data.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.

更新日期/Last Update: 2016-09-28