[1]闫盼盼,陈丕炜,曹圣山,等. 遗传算法在构建犯罪预警积分模型中的应用[J].计算机技术与发展,2016,26(07):142-146.
 YAN Pan-pan,CHEN Pi-wei,CAO Sheng-shan,et al. Application of Genetic Algorithm in Construction of Criminal Early Warning Cumulative Model[J].,2016,26(07):142-146.
点击复制

 遗传算法在构建犯罪预警积分模型中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年07期
页码:
142-146
栏目:
应用开发研究
出版日期:
2016-07-10

文章信息/Info

Title:
 Application of Genetic Algorithm in Construction of Criminal Early Warning Cumulative Model
文章编号:
1673-629X(2016)07-0142-05
作者:
 闫盼盼陈丕炜曹圣山王琦吕可波高翔
 中国海洋大学 数学科学学院
Author(s):
 YAN Pan-panCHEN Pi-weiCAO Sheng-shanWANG QiLü Ke-boGAO Xiang
关键词:
 犯罪预警积分模型遗传算法参数识别
Keywords:
 criminal early warningcumulative model genetic algorithmparameters identification
分类号:
TP391
文献标志码:
A
摘要:
 通过建立线性积分模型,研究犯罪嫌疑人的分类分级问题,实现对犯罪行为的预警。将积分模型参数的确定归结为目标函数非解析的最佳参数识别问题,并利用遗传算法得到最佳参数。为了克服传统遗传算法的早熟现象和局部收敛问题,文中提出了一种具有改进的交叉算子和变异算子的遗传算法。改进的遗传算法可加快算法收敛速度,从而缩短寻找最优解的时间,提高算法的效率。数值实验结果表明,改进遗传算法用于犯罪嫌疑人的分类分级问题寻找最佳参数有更高的运行效率,建立的积分模型对犯罪嫌疑人的分类分级具有较好的准确率。
Abstract:
 By establishing the linear cumulative model,it studies the classification of the criminal suspects to realize the early warning of criminal activity. The cumulative model parameters determined come down to solving a target function non-analytic of the parameters i-dentification problem,and use genetic algorithm to solve this model getting the optimal parameters. In order to overcome premature and local convergence of traditional genetic algorithm,it puts forward an improved genetic algorithm with a modified crossover operator and mutation operator in this paper. Improved genetic algorithm can speed up the convergence rate,thus shortening the time to find the optimal solutions and improving the efficiency of full instructions. The experimental result shows that improved genetic algorithm applied to crimi-nal suspects has better operating efficiency to solve optimal parameters classification problem,and this cumulative model has good accura-cy.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.

更新日期/Last Update: 2016-09-28