[1]王劲东,武频. 一种基于Kinect的指尖检测算法[J].计算机技术与发展,2016,26(07):14-18.
 WANG Jin-dong,WU Pin. An Algorithm of Fingertip Detection Based on Kinect[J].,2016,26(07):14-18.
点击复制

 一种基于Kinect的指尖检测算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年07期
页码:
14-18
栏目:
智能、算法、系统工程
出版日期:
2016-07-10

文章信息/Info

Title:
 An Algorithm of Fingertip Detection Based on Kinect
文章编号:
1673-629X(2016)07-0014-05
作者:
 王劲东武频
 上海大学 计算机工程与科学学院
Author(s):
 WANG Jin-dongWU Pin
关键词:
 指尖检测曲率凸包平行向量Kinect
Keywords:
 fingertip detectioncurvatureconvex-concaveparallel vectorKinect
分类号:
TP391
文献标志码:
A
摘要:
 指尖检测是人机交互过程中的关键技术,因为人手的差异,对指尖的检测总会存在一些误判点。文中在基于曲率算法的基础上,提出了利用凸包算法和平行向量进行指尖检测的方法。该方法首先利用Kinect获取人体的骨骼信息和深度信息图像,通过人手的关节点锁定手部位置,并利用人手肤色特征和边缘检测算法提取手部区域轮廓。然后在手部区域的轮廓上根据曲率来检测类指尖点,结合凸包计算排除凹点和手臂点,最后根据手指的两侧接近平行的特性排除弯曲的手指或者非手指,最终检测出有效的指尖。实验结果表明,该方法在复杂背景下能够对不同的类指尖点进行排除,并且有较高的检测精度。
Abstract:
 Fingertip detection is a crucial technology in the process of human-computer interaction. Because of differences in human hands,there will always be some misjudgment points in fingertip detection. Based on curvature algorithm,a method of fingertip detection is proposed using convex-concave algorithm and parallel vector. Firstly,it obtains information of human bone and in-depth image using Kinect,locking hand position by joints of human hands,and extracts the hand contour area using color characteristics of human hand and edge detection algorithm. Then on the contour of the hand region,fingertips are detected according to the curvature,and combined with the convex hull,pits and arm points are computed and excluded. At last,according to the characteristic that both sides of the finger are nearly parallel,curved fingers or non-fingers are excluded,and valid fingertips are detected. Experimental results show that this method can exclude different classes of fingertips under complex background with higher detection accuracy.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.

更新日期/Last Update: 2016-09-28