[1]蔡杰,刘陈,陆峰. 基于随机几何理论的多小区协作网络分析[J].计算机技术与发展,2016,26(06):200-204.
 CAI Jie,LIU Chen,LU Feng. Analysis of Multi-cell Coordination Network Based on Stochastic Geometry Approach[J].,2016,26(06):200-204.
点击复制

 基于随机几何理论的多小区协作网络分析()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年06期
页码:
200-204
栏目:
应用开发研究
出版日期:
2016-06-10

文章信息/Info

Title:
 Analysis of Multi-cell Coordination Network Based on Stochastic Geometry Approach
文章编号:
1673-629X(2016)06-0200-05
作者:
 蔡杰刘陈陆峰
 南京邮电大学 电子科学与工程学院
Author(s):
 CAI JieLIU ChenLU Feng
关键词:
 蜂窝网络多小区协作泊松点过程覆盖概率随机几何
Keywords:
 cellular networkmulti-cell coordinationPoisson point processcoverage probabilitystochastic geometry
分类号:
TN929.5
文献标志码:
A
摘要:
 多小区协作技术能够解决拥堵蜂窝网络中小区边缘用户通信质量较差的问题,但是目前维纳模型无法准确分析该技术对蜂窝网络的影响。所以为了合理分析多小区协作技术带来的性能提升,文中提出利用泊松点过程的方法对蜂窝小区进行建模。在该模型下利用随机几何工具,分析了下行链路和上行链路中使用多小区协作技术情况下的覆盖概率,得到了覆盖概率准确数学表达式和该技术所能提供的增益。通过分析发现,使用多小区协作技术能明显提升小区的覆盖能力。并且随着协作越充分,该技术带来的增益越大。
Abstract:
 In response to the problem of poor communication quality suffered by edge residential users in congested cellular network,one of feasible methods is to employ multi-community collaboration technology. But now the Wyner model cannot analyze this technology accurately. In this paper,the Poisson point process is used to model the cellular community,which is able to accurately analyze communi-cation quality of users in the scenario of edge residential users employing multi-community collaboration technology. The accurate mathe-matical expressions of coverage probability in uplink and downlink regarding any user within the community are calculated using stochas-tic geometry tools. The result shows the multi-community collaboration technology can heavily promote the coverage ability. With the ad-equacy of collaboration,it can bring more enhancement in coverage ability.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(06):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(06):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(06):47.

更新日期/Last Update: 2016-09-26