[1]沈洋洋[],黄丽亚[],郭迪[],等. 融合互信息和支持向量机的癫痫自动检测算法[J].计算机技术与发展,2016,26(06):133-137.
 SHEN Yang-yang[],HUANG Li-ya[],GUO Di[] DA Cheng-lu[],et al. An Automatic Detection Algorithm for Epilepsy EEG Based on MI and SVM[J].,2016,26(06):133-137.
点击复制

 融合互信息和支持向量机的癫痫自动检测算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年06期
页码:
133-137
栏目:
应用开发研究
出版日期:
2016-06-10

文章信息/Info

Title:
 An Automatic Detection Algorithm for Epilepsy EEG Based on MI and SVM
文章编号:
1673-629X(2016)06-0133-05
作者:
 沈洋洋[1]黄丽亚[1]郭迪[1]笪铖璐[1] 陈志阳[1] 戴加飞[2]
1. 南京邮电大学 电子科学与工程学院;2.南京军区南京总医院神经内科
Author(s):
 SHEN Yang-yang[1]HUANG Li-ya[1]GUO Di[1] DA Cheng-lu[1]CHEN Zhi-yang[1]DAI Jia-fei[2]
关键词:
 互信息支持向量机 脑电信号特征提取癫痫自动检测
Keywords:
 MISVMEEGfeature extractionautomatic epilepsy detection
分类号:
TP301.6
文献标志码:
A
摘要:
 脑电图( Electroencephalogram,EEG)是通过电极记录下来的脑神经细胞群的自发性、节律性电活动,是癫痫诊断中最重要的一项检查工具。文中提出了一种新的基于互信息( Mutual Information,MI)和支持向量机( Support Vector Machine, SVM)的特征提取和分类的方法,可以高效地区分正常脑电信号和癫痫脑电信号,并分别对比了相同维度下不同特征向量组合以及不同维度的特征向量组合的分类效果。除此之外,还对比了文中算法与其他常用算法的分类效果和算法效率。实验结果表明,由两类脑电信号的互信息序列提取的以均值、方差组成的二维特征向量,具有运算简单、分类准确率高的优点,同时文中算法比其他常用算法具有更快的运算速度,这对于临床实时监控癫痫是否发作具有积极的指导意义。
Abstract:
 Electroencephalogram ( EEG) is the most important tools for seizure detection by recording spontaneous and rhythmic electrical activity of brain cells through electrodes. A new method for feature extraction and classification is proposed based upon Mutual Informa-tion ( MI) and Support Vector Machine ( SVM) ,which can distinguish epilepsy EEG from normal EEG quickly and efficiently. Then the comparison on the classification results is made using various combinations of feature vector in the same dimension and in the different di-mension. In addition,the classification results and efficiency are compared between proposed algorithm and other common algorithm. The experiment shows that the two-dimensional feature vectors combining mean and variance extracted from MI sequence of epilepsy EEG and normal EEG,has advantages of simple operation and high classification result,and this algorithm is also faster than others,which is useful for clinical seizure detection in real time.

相似文献/References:

[1]许镇 王洪国 冉玉梅 杨玉会.基于判别模型的垃圾邮件过滤方法[J].计算机技术与发展,2010,(01):177.
 XU Zhen,WANG Hong-guo,RAN Yu-mei,et al.Spam Filter Method Based on Discriminative Model[J].,2010,(06):177.
[2]王友国.基于互信息的多阈值系统中随机谐振现象研究[J].计算机技术与发展,2010,(06):89.
 WANG You-guo,LIU Hong-wei,LUO Ji.Stochastic Resonance in Multi-Threshold Systems Based on Mutual Information[J].,2010,(06):89.
[3]程节华 段汉根.汉语短语识别方法研究[J].计算机技术与发展,2008,(04):67.
 CHENG Jie-hua,DUAN Han-gen.Research on Phrase Chunking Methods[J].,2008,(06):67.
[4]翟利志 王敬东 李鹏.基于邻域信息的红外与可见光图像互信息配准[J].计算机技术与发展,2008,(10):151.
 ZHAI Li-zhi,WANG Jing-dong,LI Peng.Infrared and Visible Light Image Mutual Information Registration Based on Neighborhood Information[J].,2008,(06):151.
[5]赵国际 李竹林 赵宗涛 张宏[].文本分类技术及在军事情报中的应用[J].计算机技术与发展,2007,(08):176.
 ZHAO Guo-ji,LI Zhu-lin,ZHAO Zong-tao,et al.Technology of Text Classification and Application in Military Intelligence Management[J].,2007,(06):176.
[6]胡逢彬 桂现才.决策表属性约简的相对信息量表示[J].计算机技术与发展,2006,(07):39.
 HU Feng-bin,GUI Xian-cai.Relative Information Quantity Representation for Attribute Reduction of Decision Tables[J].,2006,(06):39.
[7]王友国 刘沁雨.多阈值系统中高斯混合噪声改善信息的传输[J].计算机技术与发展,2011,(04):120.
 WANG You-guo,LIU Qin-yu.Gaussian Mixture Noise to Improve Information Transmission in Multi-threshold System[J].,2011,(06):120.
[8]魏博诚 王爱平 沙先军 王永.一种消除中文分词中交集型歧义的方法[J].计算机技术与发展,2011,(05):60.
 WEI Bo-cheng,WANG Ai-ping,SHA Xian-jun,et al.A Method about Removing Overlapping Ambiguity Producing in Chinese Matching[J].,2011,(06):60.
[9]韩月阳 邓世昆 贾时银 李远方.基于字分类的中文分词的研究[J].计算机技术与发展,2011,(07):29.
 HAN Yue-yang,DENG Shi-kun,JIA Shi-yin,et al.Chinese Word Segmentation Research Based on Classification of Words[J].,2011,(06):29.
[10]姚明海,赵连朋,刘维学.基于特征选择的Bagging分类算法研究[J].计算机技术与发展,2014,24(04):103.
 YAO Ming-hai,ZHAO Lian-peng,LIU Wei-xue.Research on Bagging Classification Algorithm Based on Feature Selection[J].,2014,24(06):103.
[11]王友国,姜梦琦,翟其清. 多阈值神经网络系统中的随机共振研究[J].计算机技术与发展,2015,25(12):32.
 ANG You-guo,JIANG Meng-qi,ZHAI Qi-qing. Research on Stochastic Resonance in Multi-threshold Neural Network System[J].,2015,25(06):32.

更新日期/Last Update: 2016-09-22