[1]张全全[],谭文安[][]. 基于遗传-禁忌算法的应急救援前摄性调度优化[J].计算机技术与发展,2016,26(06):119-122.
 ZHANG Quan-quan[] TAN Wen-an[][]. Proactive Scheduling Optimization of Emergency Rescue Based on Hybrid Tabu-genetic Optimization Algorithm[J].,2016,26(06):119-122.
点击复制

 基于遗传-禁忌算法的应急救援前摄性调度优化()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年06期
页码:
119-122
栏目:
应用开发研究
出版日期:
2016-06-10

文章信息/Info

Title:
 Proactive Scheduling Optimization of Emergency Rescue Based on Hybrid Tabu-genetic Optimization Algorithm
文章编号:
1673-629X(2016)06-0119-04
作者:
 张全全[1]谭文安[1][2]
1. 南京航空航天大学 计算机科学与技术学院;2.上海第二工业大学 计算机与信息学院
Author(s):
 ZHANG Quan-quan[1] TAN Wen-an[1][2]
关键词:
 前摄性调度遗传算法禁忌算法应急救援
Keywords:
 proactive schedulinggenetic algorithmtabu algorithmemergency rescue
分类号:
TP39
文献标志码:
A
摘要:
 应急救援活动本身具有不确定性和复杂性的特点。为了对救援活动的顺利开展进行支持,文中以最小化救援损失为目标,研究应急救援前摄性调度优化问题。首先对问题进行界定,对问题进行符号化表示,并由此定义出资源约束下的救援计划调度优化模型。根据救援活动的紧急程度分配优先级,并定义出优化目标函数。该问题是强NP-hard的,由此根据现代优化算法的特点设计出遗传禁忌启发式算法。最后通过对某事故救援数据进行分析模拟对提出的算法进行说明。结果表明,该算法可以有效对优化模型进行求解。该研究可为突发事件的应急救援活动的开展提供决策支持。
Abstract:
 Emergency rescue and relief is complicated and uncertain. Proactive scheduling is essential to provide decision support for emer-gency rescue. In this paper,first the problem is defined and signified,thus defining the rescue plan scheduling optimization model under the restriction of resources. According to the degree of emergency for rescue activities,the priority is assigned and the optimal objective function is defined. The problem is NP-hard. Then a genetic-tabu heuristic algorithm is designed in accordance with the features of mod-ern optimal algorithms. Finally,it is elaborated by analysis and simulation of accident rescue data. Experiment shows that the algorithm can effectively solve the optimal model. The research can be able to provide the decision support for emergency rescue of accident.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(06):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(06):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(06):47.

更新日期/Last Update: 2016-09-22