[1]宋文慧,高建瓴. 基于矩阵的Apriori算法改进[J].计算机技术与发展,2016,26(06):62-64.
 SONG Wen-hui,GAO Jian-ling. Improved Apriori Algorithm Based on Matrix[J].,2016,26(06):62-64.
点击复制

 基于矩阵的Apriori算法改进()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年06期
页码:
62-64
栏目:
智能、算法、系统工程
出版日期:
2016-06-10

文章信息/Info

Title:
 Improved Apriori Algorithm Based on Matrix
文章编号:
1673-629X(2016)06-0062-03
作者:
 宋文慧高建瓴
 贵州大学 大数据与信息工程学院
Author(s):
 SONG Wen-huiGAO Jian-ling
关键词:
 关联规则 Apriori算法矩阵M-Apriori算法
Keywords:
 association ruleApriori algorithmmatrixM-Apriori algorithm
分类号:
TP301.6
文献标志码:
A
摘要:
 文中介绍了经典Apriori算法的原理、思想和步骤,以及基于矩阵的Apriori算法。针对Apriori算法需要多次扫描数据库和产生大量候选项集的缺点,提出了一种基于矩阵的Apriori算法的改进方法。该方法的不同之处在于矩阵的构建方法,通过对事务数据库的一次整体扫描,把事务数据库中的数据转换成一个上三角矩阵,然后通过访问上三角矩阵中的元素就可直接得到频繁1项集和频繁2项集,再根据经典的Apriori算法,利用频繁2项集得到频繁3项集,依此进行下去。该算法因为有上三角矩阵的引入,故可以适当地减少访问事务数据库的次数,同时还减少了大量候选项集的产生,尤其是二次候选项集,节约了存储空间。实验结果表明,该改进算法是有效的,减少了使用扫描数据库的函数的次数,并且保证了频繁项集的准确性。
Abstract:
 It introduces the principles,ideas and steps of the classical Apriori algorithm,as well as the Apriori algorithm based on matrix in this paper. In view of the shortcomings for traditional Apriori algorithm of requiring multiple scanning database and producing a large number of candidate itemsets,an improved Apriori algorithm based on matrix is proposed. The difference of this method is the method to construct a matrix,through a whole scan of the transaction database,the transaction data in the database into a upper triangular matrix,and then by accessing the elements in the upper triangular matrix can obtain frequent itemsets 1 and frequent itemsets 2 directly. According to the classical Apriori algorithm,using the frequent itemsets 2 get frequent itemsets 3,proceeding accordingly. Because of the introduction of upper triangular matrix,the improved algorithm can reduce the number of accessing database and the incidence of a large number of candidate itemsets,especially the candidate itemsets 2,saving storage space. The experiment shows that the improved algorithm is effective to reduce the number of functions used to scan the database and to ensure the accuracy of the frequent itemsets.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(06):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(06):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(06):47.

更新日期/Last Update: 2016-09-20