[1]卢健,黄杰,潘峰. 基于多尺度各向异性高斯核的彩色图像边缘检测算法[J].计算机技术与发展,2016,26(05):66-70.
 LU Jian,HUANG Jie,PAN Feng. Color Image Edge Detection Algorithm Based on Multi-scale Anisotropic Gaussian Filter[J].,2016,26(05):66-70.
点击复制

 基于多尺度各向异性高斯核的彩色图像边缘检测算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年05期
页码:
66-70
栏目:
智能、算法、系统工程
出版日期:
2016-05-10

文章信息/Info

Title:
 Color Image Edge Detection Algorithm Based on Multi-scale Anisotropic Gaussian Filter
文章编号:
1673-629X(2016)05-0066-05
作者:
 卢健黄杰潘峰
 西安工程大学 电子信息学院
Author(s):
 LU JianHUANG JiePAN Feng
 
关键词:
 各向异性高斯核多尺度EMS 彩色图像
Keywords:
 anisotropic Gaussianmulti-scaleEMScolor image
分类号:
TP391.41
文献标志码:
A
摘要:
 文中提出一种新的对噪声鲁棒的彩色图像边缘检测算法.该算法利用多尺度乘积作为提取彩色图像的边缘映射的测度.首先,分别利用单尺度各向异性高斯核的方向导数计算彩色图像的边缘强度映射后再求取尺度乘积的均方值,然后通过非极大值抑制找出候选边缘像素点,最后在高低门限值的约束下去除伪边缘像素点,通过滞后判定实现边缘连接并将边缘图作为掩码与彩色图像结合形成彩色图像边缘图.与Canny算法相比,该算法通过多尺度高斯核的结合得到较好的边缘分辨率,同时引入依赖于噪声的高低门限来控制虚假边缘的发生可能性.
Abstract:
 A new color image edge detection algorithm of noise robustness is proposed. It uses multi-scale multiplication as measure to extract the color image map. First,single-scale anisotropic Gaussian kernel directional derivative filters are used to calculate image inten-sity map respectively and calculate the mean square value of multi-scale multiplication. Then through the non-maximum suppression,the candidate edge pixel is found. Finally,by the high and low threshold values and the implementation of lagging,the false edge pixels are e-rased to realize edges connected,combining edge figure as a mask with color image to form the color image edge. Compared with the Canny algorithm,the algorithm obtains,by the combination small and big scale of the Gaussian kernel,a better edge resolution. At the same time,high and low threshold dependable of noise is introduced to reduce the possibility of a false edge in noise background.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(05):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(05):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(05):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(05):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(05):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(05):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(05):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(05):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(05):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(05):47.

更新日期/Last Update: 2016-09-19