[1]孙飞.胡钧. 基于DS证据理论的双门限协作频谱感知新方法[J].计算机技术与发展,2016,26(04):195-199.
 SUN Fei,HU Jun. mproved Cooperative Spectrum Sensing Scheme of Double Threshold Decision Based on Dempster-Shafer Theory[J].,2016,26(04):195-199.
点击复制

 基于DS证据理论的双门限协作频谱感知新方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年04期
页码:
195-199
栏目:
应用开发研究
出版日期:
2016-04-10

文章信息/Info

Title:
 mproved Cooperative Spectrum Sensing Scheme of Double Threshold Decision Based on Dempster-Shafer Theory
文章编号:
1673-629X(2016)04-0195-05
作者:
 孙飞.胡钧
 南京邮电大学 宽带无线通信与传感网技术教育部重点实验室
Author(s):
 SUN FeiHU Jun
关键词:
 协作频谱感知DS证据理论双门限判决协作带宽开销
Keywords:
 cooperative spectrum sensingDempster-Shafer evidence theorydouble threshold decisionbandwidth cost of cooperation
分类号:
TN925.5
文献标志码:
A
摘要:
 文中提出了一种认知无线电协作频谱感知改进方法。该方法将基于DS证据理论的融合技术与双门限判决方法的优点结合起来。首先,在本地感知时,根据双门限判决去除可靠性不高的感知用户,让可靠性较高的感知用户向融合中心发送信任度函数值,减少了向融合中心发送的数据,从而降低了系统的协作带宽开销。在融合中心,利用DS融合准则,只对接收到的可靠性较高的数据进行融合判决,从而降低融合中心的计算量。仿真结果表明,该改进方法在降低系统的计算量的同时,既可以保持经典DS证据融合方法的高检测性能,也可以有效地降低协作感知的报告信道带宽。
Abstract:
 An improved cooperative spectrum sensing scheme in cognitive radio networks is proposed,which combines the fusion technol-ogy based on Dempster-Shafer evidence theory with the advantage of double threshold decision. In the local sensing period, double threshold decision is introduced to remove the cognitive users with low reliability and let the cognitive users with high reliability send the trusted function value,decreasing the data sending to the fusion center,so as to reduce report channel bandwidth of cooperation. In the fu-sion period,just the highly credible sensing results are fused at the fusion center using the Dempster-Shafer theory,which could reduce the calculation of fusion center. The simulation results show that the novel scheme can keep high detection performance and reduce band-width of cooperation with a low calculation of cooperative system.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(04):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(04):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(04):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(04):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(04):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(04):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(04):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(04):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(04):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(04):47.
[11]刘敏,岳文静,蒲昱,等. 提高认知多跳网络的协作频谱感知方法[J].计算机技术与发展,2016,26(01):171.
 LIU Min,YUE Wen-jing,PU Yu,et al. A Method of Cooperative Spectrum Sensing of Enhancement in Cognitive Radio Multi-hop Networks[J].,2016,26(04):171.
[12]李莎[,戴建新[],程崇虎[],等. 模拟主用户攻击下的协作频谱感知[J].计算机技术与发展,2017,27(02):72.
 LI Sha[],DAI Jian-xin[],CHENG Chong-hu[],et al. Cooperative Spectrum Sensing in Presence of Primary User Emulation Attack[J].,2017,27(04):72.
[13]董守超[],张晶[][]. 基于能量效率的协作频谱感知时间优化[J].计算机技术与发展,2017,27(03):176.
 DONG Shou-chao[],ZHANG Jing[][]. Optimization of Cooperative Spectrum Sensing Time Based on Energy Efficiency[J].,2017,27(04):176.
[14]陈晓思,杭燚灵. 小样本能量检测中的双门限协作频谱感知[J].计算机技术与发展,2017,27(03):193.
 CHEN Xiao-si,HANG Yi-ling. Double-threshold Cooperative Spectrum Sensing in Small Sample Energy Detection[J].,2017,27(04):193.
[15]李莎[],戴建新[],程崇虎[],等. 模拟主用户攻击下协作频谱感知最佳融合准则[J].计算机技术与发展,2017,27(04):126.
 LI Sha[],DAI Jian-xin[],CHENG Chong-hu[],et al. Optimal Fusion Rule of Cooperative Spectrum Sensing in Presence ofPrimary User Emulation Attack[J].,2017,27(04):126.
[16]高卉[],冯友宏[][],王晓雨[]. 认知无线传感网络中吞吐量能耗均衡研究[J].计算机技术与发展,2017,27(10):130.
 GAO Hui[],FENG You-hong[][],WANG Xiao-yu[]. Research on Tradeoff of Energy Consumption and Throughput in Cognitive Wireless Sensor Networks[J].,2017,27(04):130.

更新日期/Last Update: 2016-06-17