[1]刘加运,李玉惠,李勃,等. 一种多维特征融合的车辆对象同一性匹配方法[J].计算机技术与发展,2016,26(04):167-171.
 LIU Jia-yun,LI Yu-hui,LI Bo,et al. A Vehicle Object Identity Matching Method of Multidimensional Feature Combination[J].,2016,26(04):167-171.
点击复制

 一种多维特征融合的车辆对象同一性匹配方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年04期
页码:
167-171
栏目:
应用开发研究
出版日期:
2016-04-10

文章信息/Info

Title:
 A Vehicle Object Identity Matching Method of Multidimensional Feature Combination
文章编号:
1673-629X(2016)04-0167-05
作者:
 刘加运李玉惠李勃严明
 昆明理工大学 信息工程与自动化学院;云南省智能交通系统工程技术研究中心 智能图像处理研究室
Author(s):
 LIU Jia-yunLI Yu-huiLI BoYAN Ming
关键词:
 特征融合同一性图像匹配局部特征感知哈希特征
Keywords:
 feature combinationidentityimage matchinglocal featureperceptual hash feature
分类号:
TP391
文献标志码:
A
摘要:
 基于图像的车辆匹配是图像匹配在智能交通领域内的具体应用。为了实现车辆对象的快速匹配,文中提出一种多维特征融合的车辆对象同一性匹配方法。该方法分为两个阶段进行。第一阶段先对车辆对象进行初步筛选,提取车辆对象的颜色特征和车型进行快速匹配,计算特征向量的欧氏距离,排除最不可能相似的车辆对象;第二阶段根据摄像头物理条件及视频编码格式对车辆的局部特征、感知哈希特征进行加权多比较,进行车辆的同一性精细化匹配。这样第一阶段匹配完成后,第二阶段简化为只在车辆大类内匹配,缩小了匹配范围。实验结果表明,该方法能够有效缩小车辆匹配范围,匹配到最有可能和目标车辆是同一车辆的准确率较高。
Abstract:
 Vehicles based on image matching is image matching in the specific application in the field of intelligent transportation. In order to achieve quick matching for vehicle object,a method of vehicle object identity matching based on multidimensional feature combination is proposed. This method can be divided into two stages. First,the vehicle object is carried on the preliminary selection,extracting color features and models for fast matching, calculating the Euclidean distance of feature vector to exclude the impossible similar vehicles. Then,according to the physical condition of camera and video coding format,the local features of the vehicle and perceptual hash features are compared to complete the vehicle’ s identity matching. After completion of the first phase matching,the second phase is simplified to only within the vehicle types match,narrowing the scope of the match. The experimental results show that this method can effectively re-duce the vehicle matching range,and match to the most likely to be the same as target vehicle with high accuracy.

相似文献/References:

[1]周伟 武港山.基于显著图的花卉图像分类算法研究[J].计算机技术与发展,2011,(11):15.
 ZHOU Wei,WU Gang-shan.Research on Saliency Map Based Flower Image Classification Algorithm[J].,2011,(04):15.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(04):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(04):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(04):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(04):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(04):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(04):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(04):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(04):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(04):43.
[11]黎粤华,单磊,田仲富,等. 基于多特征融合的视频烟雾检测[J].计算机技术与发展,2016,26(01):129.
 LI Yue-hua,SHAN Lei,TIAN Zhong-fu,et al. Video Smoke Detection Based on Multi Feature Fusion Technology[J].,2016,26(04):129.
[12]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(04):19.

更新日期/Last Update: 2016-06-17