[1]刘冬[][],靳蓓蓓[],阙向红[]. 基于一种遗传算法的最小测试用例集自动生成[J].计算机技术与发展,2016,26(04):86-89.
 LIU Dong[][],JIN Bei-bei[],QUE Xiang-hong[]. Automatic Generation of Minimal Test Set Based on a Genetic Algorithm[J].,2016,26(04):86-89.
点击复制

 基于一种遗传算法的最小测试用例集自动生成()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年04期
页码:
86-89
栏目:
智能、算法、系统工程
出版日期:
2016-04-10

文章信息/Info

Title:
 Automatic Generation of Minimal Test Set Based on a Genetic Algorithm
文章编号:
1673-629X(2016)04-0086-04
作者:
 刘冬[1][2] 靳蓓蓓[3] 阙向红[2]
 1.皖南医学院第一附属医院 计算机中心;2. 华中科技大学 网络与计算中心;3.安徽师范大学
Author(s):
 LIU Dong[1][2] JIN Bei-bei[3] QUE Xiang-hong[2]
关键词:
 测试用例集测试用例基本路径集基本遗传算法软件测试
Keywords:
 test settest casebasic path setsimple genetic algorithmsoftware testing
分类号:
TP301.6
文献标志码:
A
摘要:
 测试数据的生成是一个复杂的问题,且其技术和方法还不成熟。在生成最小测试用例集过程中,为了避免基本遗传算法对已经满足测试需求的测试用例重复进行遗传操作,文中在基本遗传算法的基础上,最大提高遗传算法的稳定性,提出最大稳定遗传算法( LSGA)。该算法能很好地保证种群的最大稳定性,提高搜索性能,最后对该算法从概率角度理论证明其优越性。实例分析表明,利用该算法能较快生成最小测试用例集,从而实现对测试目标的充分测试,提高测试效率,降低测试成本。
Abstract:
 Test data generation is a complicated problem and its method and technique is not mature. In the process of the minimum test case generation,the Largest Steady Genetic Algorithm ( LSGA) is proposed to improve the stability greatly,which is based on the basic genetic algorithm,in order to avoid repeat genetic manipulation of test case which has been met the testing requirement. This algorithm can guarantee the largest population stability and improve the search performance. Contrasted with the genetic algorithm,its superiority is proved from the perspective of the probability. Example analysis shows that using the proposed algorithm can rapidly generate minimum test case sets,achieving the target of the full test,improving the test efficiency and reducing test cost.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(04):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(04):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(04):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(04):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(04):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(04):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(04):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(04):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(04):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(04):47.

更新日期/Last Update: 2016-06-16