[1]高倩[],何聚厚[]. 改进的面向数据稀疏的协同过滤推荐算法[J].计算机技术与发展,2016,26(03):63-66.
 GAO Qian[],HE Ju-hou[]. An Improved Collaborative Filtering Recommendation Algorithm for Data Sparsity[J].,2016,26(03):63-66.
点击复制

 改进的面向数据稀疏的协同过滤推荐算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年03期
页码:
63-66
栏目:
智能、算法、系统工程
出版日期:
2016-03-10

文章信息/Info

Title:
 An Improved Collaborative Filtering Recommendation Algorithm for Data Sparsity
文章编号:
1673-629X(2016)03-0063-04
作者:
 高倩[1]何聚厚[2]
 1.陕西师范大学 计算机科学学院;2.陕西师范大学 现代教学技术教育部重点实验室
Author(s):
 GAO Qian[1]HE Ju-hou[2]
关键词:
 用户相似性属性兴趣动态数据稀疏性
Keywords:
 user similarityattributeinterestdynamicdata sparsity
分类号:
TP301.6
文献标志码:
A
摘要:
 用户相似性和最近邻集合是协同过滤算法中最重要的两个步骤。传统的协同过滤算法依靠用户评分计算用户相似性并寻找K个邻居作为最近邻的方法为用户产生推荐,但是在数据稀疏的情况下,仅仅依靠用户评分使得推荐效果不准确。针对以上问题,文中提出一种改进的面向数据稀疏的协同过滤推荐算法。该方法引入用户属性相似性和用户兴趣度相似性,并结合传统的用户评分相似性计算用户间的相似度,通过多次实验调整三者的权重,并且采用动态选取邻居集合的方法确定用户的最近邻,从而为用户推荐最合适的项目,增强了方法实用性,以此来缓解用户数据稀疏性问题。实验结果表明,文中方法能够充分利用用户的各类数据信息,提高了预测评分的准确性及推荐质量。
Abstract:
 User similarity and nearest neighbor set is two important steps in acollaborative filtering algorithm. The traditional Collaborative Filtering ( CF) computes user similarity only relying on user rating and finds K neighbors as nearest neighbor to produce recommendation for users,but in the case of sparse data,only relying on user rating calculation makes the recommendation effect inaccurate. To solve the problems,an improved collaborative filtering recommendation algorithm for data sparsity is proposed,which introduces the similarity of user attributes and user interest,combined with traditional user rating similarity to compute similarity between users. The weights of three is adjusted through several experiments,and the dynamic method is used to search the user’ s nearest neighbor to recommend suitable i-tems for users,in order to alleviate user data sparsity problem. Experimental results show that this method can make full use of all kinds of users’ data information,improving the accuracy of predicted ratings and quality of recommendation.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(03):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(03):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(03):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(03):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(03):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(03):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(03):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(03):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(03):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(03):47.

更新日期/Last Update: 2016-06-12