[1]黄雄波. 时序数据的周期模式发现算法的递推改进[J].计算机技术与发展,2016,26(02):47-51.
 HUANG Xiong-bo. Recursive Improvement of Periodic Pattern Algorithm of Time Series Data[J].,2016,26(02):47-51.
点击复制

 时序数据的周期模式发现算法的递推改进()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年02期
页码:
47-51
栏目:
智能、算法、系统工程
出版日期:
2016-02-10

文章信息/Info

Title:
 Recursive Improvement of Periodic Pattern Algorithm of Time Series Data
文章编号:
1673-629X(2016)02-0047-05
作者:
 黄雄波
 佛山职业技术学院 电子信息系
Author(s):
 HUANG Xiong-bo
关键词:
 时序数据周期模式谐波分析法递推
Keywords:
 time series dataperiodic modeharmonic analysis methodrecursion
分类号:
TP311
文献标志码:
A
摘要:
 从时序数据中识别和提取出周期成分对掌握事物的内在发展规律有着重要的现实意义。在谐波分析法的基础上,提出了一种具有纳新机制的时序数据周期模式的递推发现算法。该算法通过对谐波分析法的傅里叶系数作Taylor级数的展开,得到了一系列相关的幂函数多项式,在此基础上,基于矩阵数量乘法的规则,将这些多项式解耦为可递推的表达式,进而推导出一种重复计算量极少的递推算法。数值实验验证了算法的有效性和稳定性,而且该算法在计算成本和计算精度之间还具有良好的伸缩性。
Abstract:
 To identify and extract the periodic components from time series data has important practical significance for the inherent rule of things. Based on harmonic analysis method,a periodic pattern recursive algorithm of time series data with renewal mechanism was pro-posed. A series of power function polynomial is obtained by the expansion in Taylor series of Fourier transform coefficients. On this ba-sis,an simple data algorithm is deduced by polynomial decomposition method on the account of rules of matrix multiplication. The nu-merical simulation shows that the proposed algorithm is efficient and stable. This algorithm also has good scalability between computing cost and calculation accuracy.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(02):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(02):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(02):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(02):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(02):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(02):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(02):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(02):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(02):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(02):47.

更新日期/Last Update: 2016-04-15