[1]李远博,曹菡. 基于PCA降维的协同过滤推荐算法[J].计算机技术与发展,2016,26(02):26-30.
 LI Yuan-bo,CAO Han. Collaborative Filtering Recommendation Algorithm Based on PCA Dimension Reduction[J].,2016,26(02):26-30.
点击复制

 基于PCA降维的协同过滤推荐算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年02期
页码:
26-30
栏目:
智能、算法、系统工程
出版日期:
2016-02-10

文章信息/Info

Title:
 Collaborative Filtering Recommendation Algorithm Based on PCA Dimension Reduction
文章编号:
1673-629X(2016)02-0026-05
作者:
 李远博曹菡
 陕西师范大学 计算机科学学院
Author(s):
 LI Yuan-boCAO Han
关键词:
 主成分分析降维协同过滤推荐算法
Keywords:
 PCAdimension reductioncollaborative filteringrecommendation algorithm
分类号:
TP301.6
文献标志码:
A
摘要:
 在信息过载的时代,推荐系统通过分析用户的历史行为,为用户兴趣建模,主动给用户推荐能够满足他们兴趣和需求的信息,已经被广泛应用于电子商务等多个领域。但是在推荐系统中,用户评分数据极端稀疏,矩阵的稀疏性导致推荐算法在相似性计算时存在较大误差,进而导致最近邻居选择的不准确,从而影响推荐质量。针对上面存在的问题,文中通过对评分矩阵采用PCA降维的方法,降低了评分矩阵的稀疏性,保留了最能代表用户兴趣的维数,使得相似性计算更加准确,保证了最近邻居选择的准确性,从而提高了推荐质量。实验结果表明,在公开数据集上与传统的协同过滤推荐算法相比较,文中提出的算法具有较高的准确度和覆盖度。
Abstract:
 In the era of information overload,recommender system can help users find their interest and recommend the satisfactory infor-mation to analyze their historical behavior,so it is widely used in electronic commerce and other fields. But the user rating matrix is ex-tremely sparse in recommender systems. The sparsity of the matrix leads to great error in the calculation of similarity of recommendation algorithms,bringing about the nearest neighbor sections is not accurate,thus affecting the quality of recommendation. Aiming at the prob-lems above,a dimension reduction method based on PCA was proposed to reduce the sparsity of user rating matrix,by this method the re-main matrix retain the most representative characteristic of the user interest,so that the similarity calculation is more accurate to ensure the accuracy of the nearest neighbors,thereby improving the quality of the recommendation. The experimental results show that compared with the traditional collaborative filtering algorithm,the algorithm proposed reaches a high accuracy and coverage.

相似文献/References:

[1]夏玫 陈立潮 王新波.一种提高BP神经网络泛化能力的改进算法[J].计算机技术与发展,2009,(09):62.
 XIA Mei,CHEN Li-chao,WANG Xin-bo.A Modified Algorithm to Improve Generalization Ability of BP Neural Network[J].,2009,(02):62.
[2]宋世刚 粘永健 李纲.面向目标检测的高光谱图像压缩技术[J].计算机技术与发展,2009,(11):1.
 SONG Shi-gang,NIAN Yong-jian,LI Gang.Hyperspectral Image Compression Employing Target Detection[J].,2009,(02):1.
[3]张瑞霞 王勇.融合PCA和LDA的入侵检测算法[J].计算机技术与发展,2009,(11):132.
 ZHANG Rui-xia,WANG Yong.Fusion of PCA and LDA for Intrusion Detection[J].,2009,(02):132.
[4]俞小娟 胡金柱 李琼 周毕吉.用主成分分析法研究短语字段的判别因素[J].计算机技术与发展,2008,(10):116.
 YU Xiao-juan,HU Jin-zhu,LI Qiong,et al.Studying Factors of Judging Phrase Fields by Method of Principal Component Analysis[J].,2008,(02):116.
[5]刘树利 胡茂林.基于不同视角的人脸模型识别方法[J].计算机技术与发展,2006,(06):213.
 LIU Shu-li,HU Mao-lin.Recognition of Human Face in Different Pose[J].,2006,(02):213.
[6]王辉.主成分分析及支持向量机在人脸识别中的应用[J].计算机技术与发展,2006,(08):24.
 WANG Hui.Application in Human Face Recognition Based on Principal Component Analysis and Support Vector Machine[J].,2006,(02):24.
[7]张靖 葛玮 郝克刚.软件度量中主成分分析方法的研究[J].计算机技术与发展,2006,(12):144.
 ZHANG Jing,GE Wei,HAO Ke-gang.Research of Principal Component Analysis in Software Metrics[J].,2006,(02):144.
[8]职为梅 范明.样本大小对稀有类分类的影响[J].计算机技术与发展,2011,(05):9.
 ZHI Wei-mei,FAN Ming.Impact of Sample Size for Rare-Class Classification[J].,2011,(02):9.
[9]邓炳荣 伍世元 武琳 邵雅雯 李江勇.一种基于计算机嗅觉的卷烟等级识别方法[J].计算机技术与发展,2011,(11):177.
 DENG Bing-rong,WU Shi-yuan,WU Lin,et al.Application of Electronic Nose in Discrimination of Different Levels Cigarette[J].,2011,(02):177.
[10]杨晓斌 周宁宁 杨婷婷.基于统计处理图像放大方法在人脸识别中应用[J].计算机技术与发展,2011,(12):55.
 YANG Xiao-bin,ZHOU Ning-ning,YANG Ting-ting.Application of an Image Magnification Method Based on Statistical Processing in Face Recognition[J].,2011,(02):55.
[11]李利杰[],张君华[],熊伟清[],等. 一种改进的支持向量机模型优化算法[J].计算机技术与发展,2014,24(12):114.
 LI Li-jie[],ZHANG Jun-hua[],XIONG Wei-qing[],et al. An Improved Algorithm for Model Optimization of Support Vector Machine[J].,2014,24(02):114.
[12]吴粉侠,段群. 基于NSCT的PCA与PCNN相结合的图像融合算法[J].计算机技术与发展,2015,25(12):72.
 WU Fen-xia,DUAN Qun. Image Fusion Algorithm Combining PCNN and PCA Based on NSCT[J].,2015,25(02):72.
[13]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(02):19.
[14]武文亮,张志斌,李王东岳. 温室作物生长环境的主成分分析[J].计算机技术与发展,2016,26(10):165.
 WU Wen-liang,ZHANG Zhi-bin,LI Wang-dongyue. Principal Component Analysis of Greenhouse Crop Growth Environment[J].,2016,26(02):165.
[15]陆超. PCA方法的运动轨迹检测算法研究[J].计算机技术与发展,2017,27(05):179.
 LU Chao. Research on Motion Trajectory Detection Algorithm with PCA[J].,2017,27(02):179.
[16]吕颢[],刘峰[],干宗良[],等. 基于字典学习的模糊车牌中文字符识别[J].计算机技术与发展,2017,27(11):75.
 LYU Hao[],LIU Feng[],GAN Zong-liang[],et al. Chinese Character Recognition in Fuzzy Vehicle Plate Based on Dictionary Learning[J].,2017,27(02):75.
[17]吴春香,张建明.无线感知网络中动作识别的滤波算法[J].计算机技术与发展,2018,28(05):86.[doi:10.3969/j.issn.1673-629X.2018.05.020]
 WU Chun-xiang,ZHANG Jian-ming.Filtering Algorithm for Motion Recognition in Wireless Sensor Networks[J].,2018,28(02):86.[doi:10.3969/j.issn.1673-629X.2018.05.020]

更新日期/Last Update: 2016-04-14