[1]谢文浩,翟素兰. 基于加权稀疏近邻表示的人脸识别[J].计算机技术与发展,2016,26(02):22-25.
 XIE Wen-hao,ZHAI Su-lan. Face Recognition Based on Weighted Sparse Neighbor Representation[J].,2016,26(02):22-25.
点击复制

 基于加权稀疏近邻表示的人脸识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年02期
页码:
22-25
栏目:
智能、算法、系统工程
出版日期:
2016-02-10

文章信息/Info

Title:
 Face Recognition Based on Weighted Sparse Neighbor Representation
文章编号:
1673-629X(2016)02-0022-04
作者:
 谢文浩翟素兰
 安徽大学 数学科学学院
Author(s):
 XIE Wen-haoZHAI Su-lan
关键词:
 稀疏表示特征提取加权近邻人脸识别
Keywords:
 sparse representationfeature extractionweighted nearest neighborface recognition
分类号:
TP391.4
文献标志码:
A
摘要:
 稀疏表示的人脸识别目前受到广泛的关注。针对现有稀疏近邻表示算法没有考虑不同训练样本对测试样本的重构权重,同时为了提高基于稀疏近邻表示人脸识别的识别率,文中提出一种加权稀疏近邻表示的人脸识别算法。首先在每一类训练样本中寻找与测试样本最近的k个样本,构成这一类新的训练样本;然后在每一类中都进行同样的操作,从而构造一个新的训练字典,在求解l1范数最小化的稀疏系数时,为每一个新的训练样本对应的稀疏系数赋上一个权值;最后在新的字典下,根据重构误差最小化来完成识别任务。在Yale B数据库和ORL数据库上的大量实验结果表明,文中所提算法与KNN算法和稀疏近邻表示算法相比,取得了较高的识别率,证明了该方法的有效性。
Abstract:
 Currently,face recognition via sparse representation has gained widespread attention. Since the sparse neighbor representation algorithm without considering the different weight of training samples to reconstruct the test sample,simultaneously,to improve the recog-nition rate of face recognition based on sparse neighbor representation, in this paper, a face recognition algorithm of weighted sparse neighbor representation was proposed. First,in each class of the training samples, k samples nearest to the test samples are selected,con-structed new training samples in this class. And then do the same operation in each class,so as to construct a new training dictionary, when solving sparse coefficient with l1 norm minimization,a weight is given to the sparse coefficient of each new training sample. Finally with the new training dictionary,according to the minimum reconstruction error to complete the recognition task. The most experiments results on Yale B face database and ORL face database show that the proposed method achieves higher recognition rate compared with KNN and SNRC ( Sparse Neighbor Representation for Classification) ,which confirms the effectiveness of the algorithm.

相似文献/References:

[1]朱伟冬 胡剑凌.基于马氏距离的稀疏表示分类算法[J].计算机技术与发展,2011,(11):27.
 ZHU Wei-dong,HU Jian-ling.Sparse Representation Classification Algorithm Based on Mahalanobis Distance[J].,2011,(02):27.
[2]王韦刚 庄伟胤.基于NIOS Ⅱ的图像压缩感知[J].计算机技术与发展,2012,(04):12.
 WANG Wei-gang,ZHUANG Wei-yin.Compressed Sensing of Image Based on NIOS Ⅱ[J].,2012,(02):12.
[3]葛广重,杨敏.基于稀疏表示的单幅图像超分辨率重建[J].计算机技术与发展,2013,(09):113.
 GE Guang-zhong,YANG Min.Single Image Super-resolution Reconstruction Based on Sparse Representation[J].,2013,(02):113.
[4]赵海峰,于雪敏,邹际祥,等.基于L1范数主成分分析的颅脑图像恢复[J].计算机技术与发展,2014,24(01):231.
 ZHAO Hai-feng[],YU Xue-min[],ZOU Ji-xiang[],et al.Cerebral Image Recovery Based on L1-norm Principal Component Analysis[J].,2014,24(02):231.
[5]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(02):1.
[6]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(02):5.
[7]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(02):13.
[8]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(02):21.
[9]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(02):25.
[10]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(02):29.
[11]陈静,邱晓晖,孙娜. 基于二维Gabor小波与SPP算法的人脸识别研究[J].计算机技术与发展,2014,24(11):110.
 CHEN Jing,QIU Xiao-hui,SUN Na. Research on Face Recognition Based on 2 D Gabor Wavelet and SPP Algorithm[J].,2014,24(02):110.
[12]姚刚,杨敏. 稀疏子空间聚类的惩罚参数自调整交替方向法[J].计算机技术与发展,2014,24(11):131.
 YAO Gang,YANG Min. Alternating Direction Method of Self-adjusting Penalty Parameters of Sparse Subspace Clustering[J].,2014,24(02):131.
[13]钱阳,李雷. 一种基于新型KPCA算法的视频压缩感知算法[J].计算机技术与发展,2015,25(10):101.
 QIAN Yang,LI Lei. A Video Compressed Sensing Algorithm Based on Novel KPCA[J].,2015,25(02):101.
[14]余琨,荆晓远,吴飞,等. 基于竞争聚集的K-SVD字典学习算法[J].计算机技术与发展,2015,25(11):44.
 YU Kun,JING Xiao-yuan,WU Fei,et al. K-SVD Dictionary Learning Algorithm Based on Competitive Agglomeration[J].,2015,25(02):44.
[15]李欣,崔子冠,陈杰,等. 基于局部回归和自相似性的图像超分辨率重建[J].计算机技术与发展,2016,26(10):17.
 LI Xin,CUI Zi-guan,CHEN Jie,et al. Image Super-resolution Reconstruction Based on Local Regression and Self-similarity[J].,2016,26(02):17.
[16]王晴[],荆晓远[][],朱阳平[],等. 基于局部稀疏重构度量学习的软件缺陷预测[J].计算机技术与发展,2016,26(11):54.
 WANG Qing[],JING Xiao-yuan[][],ZHU Yang-ping[],et al. Software Defect Prediction of Metric Learning Based on Local Sparse Reconstruction[J].,2016,26(02):54.
[17]钱阳,李雷. 基于新型鲁棒字典学习的视频帧稀疏表示[J].计算机技术与发展,2017,27(02):37.
 QIAN Yang,LI Lei. Sparse Representation of Video Frame Based on Novel Robust Dictionary Learning[J].,2017,27(02):37.
[18]钱阳,李雷,石曼曼. 基于双稀疏字典的新型盲压缩感知模型[J].计算机技术与发展,2017,27(05):35.
 QIAN Yang,LI Lei,SHI Man-man. A Novel Blind Compressed Sensing Model Based on DoubleSparsity Dictionary[J].,2017,27(02):35.
[19]钱阳,李雷,袁安安. 基于自适应K-SVD字典的视频帧稀疏重建算法[J].计算机技术与发展,2017,27(06):36.
 QIAN Yang,LI Lei,YUAN An-an. An Adaptive K-SVD Dictionary Learning Algorithm for Video Frame Sparse Reconstruction[J].,2017,27(02):36.
[20]谢尚高,王丽平. 基于同类测试样本组的稀疏表示人脸识别[J].计算机技术与发展,2017,27(08):7.
 XIE Shang-gao,WANG Li-ping. Sparse Representation Classification for Face Recognition with Intra-class Testing-sample Group[J].,2017,27(02):7.

更新日期/Last Update: 2016-04-14