[1]闻彬,饶彬,赵君喆,等. 融合直推式学习和语义理解的词语倾向性识别[J].计算机技术与发展,2016,26(01):74-77.
 WEN Bin,RAO Bin,ZHAO Jun-zhe,et al. Identifying of Word Sentiment Orientation of Transductive Learning and Semantic Comprehension[J].,2016,26(01):74-77.
点击复制

 融合直推式学习和语义理解的词语倾向性识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年01期
页码:
74-77
栏目:
智能、算法、系统工程
出版日期:
2016-01-10

文章信息/Info

Title:
 Identifying of Word Sentiment Orientation of Transductive Learning and Semantic Comprehension
文章编号:
1673-629X(2016)01-0074-04
作者:
 闻彬饶彬赵君喆焦翠珍戴文华
 湖北科技学院 计算机科学与技术学院
Author(s):
 WEN BinRAO BinZHAO Jun-zheJIAO Cui-zhenDAI Wen-hua
关键词:
 词语倾向性识别机器学习语义理解意见挖掘情感义原HowNet
Keywords:
 word sentiment orientationmachine learningsemantic comprehensionopinion miningsentimental primitiveHowNet
分类号:
TP391.1
文献标志码:
A
摘要:
 目前词语情感倾向性识别研究主要分为机器学习和语义理解,机器学习不能很好地识别通用领域词语,语义理解又存在准确率和召回率不够高的问题,因此文中提出了一种融合直推式学习和语义理解的词语倾向性识别方法。首先对HowNet 知识库体系进行改进,在已有的四种义原的基础上,提出第五义原—情感义原;然后将第五义原手工融入到 How-Net 知识库中,再在此基础上提出词语情感相似度计算方法计算词语的情感值;最后将该方法融合直推式学习以判定词语情感倾向性。通过实验结果表明,与支持向量机和原语义理解方法相比,该方法在识别情感词上取得了较好的效果。
Abstract:
 At present,the research on word sentiment orientation identification is mainly divided into machine learning and semantic com-prehension,but machine learning cannot handle general field words effectively,semantic comprehension also cannot get high scores at pre-cision and recall,therefore,a new fusion method between transductive learning and semantic comprehension for judging word polarity was put forward in this paper. Firstly the HowNet knowledge base system is improved,on the basis of four primitive,the fifth primitive—senti-mental primitive was proposed,which was integrated into HowNet manually,on the basis of this,then a new word sentimental similarity calculation method was proposed to compute word’s sentimental value. At last,combine this way with transductive learning for identif-ying word’s sentimental orientation. The performance of experiment shows that compared with SVM or traditional semantic comprehen-sion,it can get better results.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(01):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(01):47.

更新日期/Last Update: 2016-04-12