[1]春霞,周井泉,常瑞云. 基于 Memetic 算法的多目标复杂网络社区检测[J].计算机技术与发展,2016,26(01):53-57.
 ZHOU Chun-xia,ZHOU Jing-quan,CHANG Rui-yun. Multi-objective Complex Network Community Detection Based on Memetic Algorithm[J].,2016,26(01):53-57.
点击复制

 基于 Memetic 算法的多目标复杂网络社区检测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年01期
页码:
53-57
栏目:
智能、算法、系统工程
出版日期:
2016-01-10

文章信息/Info

Title:
 Multi-objective Complex Network Community Detection Based on Memetic Algorithm
文章编号:
1673-629X(2016)01-0053-05
作者:
 春霞周井泉常瑞云
 南京邮电大学 电子科学与工程学院
Author(s):
 ZHOU Chun-xiaZHOU Jing-quanCHANG Rui-yun
关键词:
 Memetic 算法混合交叉局部搜索多目标网络社区检测
Keywords:
 Memetic algorithmhybrid crossoverlocal searchmulti-objectivenetwork community detection
分类号:
TP301.6
文献标志码:
A
摘要:
 文中研究复杂网络社区检测机制,提出了一种基于 Memetic 算法的多目标社区检测算法。为了提高种群多样性、减少搜索空间和提高算法效率,算法采用标签启发式快速传播的初始化策略,混合交叉,在每个社区中选择一个节点变异等优化两个目标函数,即 Improved Ratio Association (IRA)和 Ratio Cut (RC),将多目标优化问题转化成同时最小优化这两个目标函数;在局部搜索中利用权重和将两个目标函数构成一个局部优化目标并采用爬山搜索来寻找个体最优。针对计算机合成网络与两个经典真实网络的实验结果表明,与四个基于 EA 的算法和 Fast modularity 算法相比,基于 Memetic 算法的多目标复杂网络社区检测机制在解决复杂网络社区检测问题上具有一定优势。
Abstract:
 The complex network community detection mechanism was studied and a multi - objective community detection based on Memetic algorithm was presented. In order to improve the diversity of the population,reduce the search space and raise the efficiency of the algorithm,the initialization strategy of label heuristic fast propagation and hybrid crossover were used in the algorithm and a node was selected in each community for mutation to optimize two objective functions,namely Improved Ratio Association (IRA) and Ratio Cut (RC),which turns the multi-objective optimization problem into minimal optimization of these two objectives at the same time. In local search,the local optimization target is constituted of weights of two objective functions and a hill-climbing strategy is used to find the best individual. Experiments on computer-generated networks and two classic real networks show that compared with four algorithms based on EAs and fast modularity algorithm,multi-objective community detection based on Memetic algorithm has certain advantages in solving complex network community detection problem.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(01):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(01):47.

更新日期/Last Update: 2016-04-12