[1]陆寄远[],刘宇熹[],高橹鑫[]. 人物越界检测中的自适应背景建模[J].计算机技术与发展,2015,25(12):109-213.
 LU Ji-yuan[],LIU Yu-xi[],GAO Lu-xin[]. Adaptive Background Modeling for People Cross-border Detection[J].,2015,25(12):109-213.
点击复制

 人物越界检测中的自适应背景建模()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年12期
页码:
109-213
栏目:
智能、算法、系统工程
出版日期:
2015-12-10

文章信息/Info

Title:
 Adaptive Background Modeling for People Cross-border Detection
文章编号:
1673-629X(2015)12-0109-05
作者:
 陆寄远[1]刘宇熹[1]高橹鑫[2]
1. 广东金融学院 计算机科学与技术系;2.中山大学 信息科学与技术学院
Author(s):
 LU Ji-yuan[1]LIU Yu-xi[1]GAO Lu-xin[2]
关键词:
 人物越界检测混合高斯背景建模基于贝叶斯理论背景建模自适应背景建模
Keywords:
 people cross-border detectionmixed Gaussian background modelingBayesian-based background modelingadaptive back-ground modeling
分类号:
TP391
文献标志码:
A
摘要:
 提出一种面向人物越界检测的自适应背景建模算法. 首先为当前场景建立一个自适应的背景模型. 然后,用去除背景图像的方法得到前景图像,再利用连通区域检测得到图像的运动区域. 最后,采用跟踪与分类交互工作的方法达到人物检测的目的. 跟踪所采用的是均值漂移( Mean Shift)算法,分类采用的是方向梯度直方图( Histogram of Oriented Gradient)和支持向量机( Support Vector Machine)的方法. 实验结果表明,在各类不同场景下,文中方法比常用背景建模方法相比具有更好的适应能力,同时对场景中的光照变化、树叶剧烈摆动等问题也有较好的处理结果. 采用此方法在得到的运动区域进行跟踪与分类,可以对人物进行准确的检测.
Abstract:
 Propose an adaptive background modeling method for people cross-border detection. Firstly,construct an adaptive background model for existing scene. Secondly,the background image method of elimination is used to obtain the foreground image,and the connect-ed area detection is applied to get the motion are of image. Finally,the method of interaction work of tracking and classifying is used to reach the purpose of human detection. As the motion area is taken out,motion tracking can be achieved by Mean Shift method. Then HOG descriptors and SVM method are used to accomplish motion classification subsequently. According to the experimental results,in all kinds of different scenarios,compared with the common background modeling method,the method proposed has better ability to adapt,at the same time for the scene problems of illumination change,leaves violent oscillation,also have good processing results. Movement area ob-tained by using this method for tracking and classification,the character can be accurately detected.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(12):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(12):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(12):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(12):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(12):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(12):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(12):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(12):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(12):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(12):47.

更新日期/Last Update: 2016-01-29