[1]王文博,殷宏,解文彬,等. GPU细分着色器中的地形无缝自适应细分[J].计算机技术与发展,2015,25(12):105-108.
 ANG Wen-bo,YIN Hong,XIE Wen-bin,et al. Real-time Terrain Tessellation on GPU Using Tessellation Shaders[J].,2015,25(12):105-108.
点击复制

 GPU细分着色器中的地形无缝自适应细分()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年12期
页码:
105-108
栏目:
智能、算法、系统工程
出版日期:
2015-12-10

文章信息/Info

Title:
 Real-time Terrain Tessellation on GPU Using Tessellation Shaders
文章编号:
1673-629X(2015)12-0105-04
作者:
 王文博殷宏解文彬张绪亮
 解放军理工大学 指挥信息系统学院
Author(s):
 ANG Wen-bo YIN HongXIE Wen-binZHANG Xu-liang
关键词:
 GPU自适应细分固定网格投射无缝细分
Keywords:
 GPUadaptive subdivisionpersistent grid mappingseamless tessellation
分类号:
TP391.9
文献标志码:
A
摘要:
 为了进一步提高大规模地形渲染的效率和真实感,提出一种利用GPU细分着色器进行自适应细分的LOD地形算法. 传统细分方法在顶点着色器中进行,需要预先计算细分模板且裂缝处理较为复杂,在实时交互过程中地形的细分效率并不高. 本算法首先利用固定网格投射的方法得到地形的粗糙采样网格,节省了视锥体裁剪过程,并且减少了裂缝出现的可能性. 其次,在细分控制着色器中利用插值点的屏幕投影误差作为误差度量方式,不断逼近误差阈值. 在此过程中,采用细分等级测度的平滑插值对误差计算过程进行修正,保证了误差度量的单调性. 最后,基于地形三角形各边的细分等级进行网格三角形无模板的无缝自适应细分. 实验结果表明,算法改善了网格的密度分布,与传统细分方法相比效率更高.
Abstract:
 In order to further improve the efficiency and reality of large-scale terrain rendering,an adaptive subdivision algorithm using GPU is proposed. The traditional method which tessellation occurred in vertex shader,needs a large number of tessellation templates and complicated treatment to cracks. Subdivision process of terrain in real time interactive process is not very efficient. To get the coarse grid of terrain,persistent grid mapping method is used. In the tessellation control shader,with screen projection error metric of interpolation point,each side of triangle is seamless adaptive subdivided. In the process,use the smooth interpolation value of subdivision level measure to modify calculation process of error,ensuring the monotonicity of error measurement. Finally,texture map is mapped to terrain using texture coordinate in the fragment shader. Experimental results show that the algorithm improves the density distribution of the grid,which is more effective than traditional adaptive subdivision method.

相似文献/References:

[1]喻家龙 姜太平 汪光阳.在GPU上基于物体空间的碰撞检测[J].计算机技术与发展,2009,(09):83.
 YU Jia-long,JIANG Tai-ping,WANG Guang-yang.Object- Space Collision Detection on Programmable Graphics Hardware[J].,2009,(12):83.
[2]陈加忠 夏涛 欧阳昆 黎单 孙自龙.GPU平台上ADL算法的实现[J].计算机技术与发展,2011,(01):165.
 CHEN Jia-zhong,XIA Tao,OUYANG-Kun,et al.Implementation of ADL Algorithm on GPU[J].,2011,(12):165.
[3]任庆东,刘跃平,袁旭公.风场作用下大规模真实感草地模拟[J].计算机技术与发展,2013,(04):198.
 REN Qing-dong,LIU Yue-ping,YUAN Xu-gong.Simulation of Large-scale Realistic Lawn Subjected to Wind Field[J].,2013,(12):198.
[4]李玥,丁友东.并行正向反馈ICP算法研究[J].计算机技术与发展,2013,(11):6.
 LI Yue,DING You-dong.Research of Positive Feedback ICP Algorithm in Parallel[J].,2013,(12):6.
[5]董敏[],阎镇.基于CUDA的航天遥感图像实时快视系统的研究[J].计算机技术与发展,2014,24(06):32.
 DONG Min[][][],YAN Zhen[].Research on Aerospace Remote Sensing Images Real-time Quick-view System Based on CUDA[J].,2014,24(12):32.
[6]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(12):1.
[7]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(12):5.
[8]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(12):13.
[9]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(12):21.
[10]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(12):25.
[11]范晓晔,田丰林,陈戈. 基于GPU的实时群体仿真算法实现[J].计算机技术与发展,2014,24(11):17.
 FAN Xiao-ye,TIAN Feng-lin,CHEN Ge. Implementation of Real-time Crowds Simulation Algorithm Based on GPU[J].,2014,24(12):17.
[12]崔树林[][],张旭[],张树清[],等. 基于GPU的大规模栅格数据分块并行处理方法[J].计算机技术与发展,2015,25(03):19.
 CUI Shu-lin[][],ZHANG Xu[],ZHANG Shu-qing[],et al. Parallel Processing Method for Large Scale Raster Data Blocking Based on GPU[J].,2015,25(12):19.

更新日期/Last Update: 2016-01-29