[1]陆海洋[],荆晓远[],董西伟[],等. 基于代价敏感学习的软件缺陷预测方法[J].计算机技术与发展,2015,25(11):58-60.
 LU Hai-yang[],JING Xiao-yuan[],DONG Xi-wei[],et al. Software Defect Prediction Based on Cost-sensitive Learning[J].,2015,25(11):58-60.
点击复制

 基于代价敏感学习的软件缺陷预测方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年11期
页码:
58-60
栏目:
智能、算法、系统工程
出版日期:
2015-11-10

文章信息/Info

Title:
 Software Defect Prediction Based on Cost-sensitive Learning
文章编号:
1673-629X(2015)11-0058-03
作者:
 陆海洋[1]荆晓远[2]董西伟[1]刘茜[1]
 1.南京邮电大学 计算机学院;2.南京邮电大学 自动化学院
Author(s):
 LU Hai-yang[1] JING Xiao-yuan[2] DONG Xi-wei[1] LIU Qian[1]
关键词:
 软件缺陷预测代价敏感拉普拉斯特征映射神经网络
Keywords:
 software defect predictioncost-sensitiveLaplacian Eigenmapsneural network
分类号:
TP301
文献标志码:
A
摘要:
 软件缺陷预测是改善软件开发质量、提高测试效率的重要途径.文中分析了软件缺陷预测的特点,同时针对当前软件缺陷预测中存在特征冗余问题和类不平衡问题进行了深入研究.首先为了解决软件模块中的特征冗余问题给软件缺陷预测造成困难,提高对软件缺陷预测的准确率,采用基于代价敏感的拉普拉斯特征映射方法(CSLE)对原样本空间进行降维,改进拉普拉斯算法(LE)中的距离度量方式,提高降维映射精度;然后通过基于代价敏感的神经网络的方法(CSB-PNN)对软件模块进行分类,调整BP神经网络的权值和偏置参数,使BP神经网络对有缺陷软件模块的误分更加敏感,进一步提高分类效果.在NASA软件缺陷标准数据集上与最新的几种软件缺陷预测方法相比,文中提出的方法能够有效提高有缺陷样本的召回率和F-measure值.
Abstract:
 Software defect prediction is an important way to improve the quality of software development and raise the testing efficiency. In this paper,analyze the characteristics of software defect prediction and focus on the research of redundancy features and the imbalance class problem existed in current software defect. In order to solve the difficulty of software defect prediction caused by redundancy fea-tures in software modules,improving the accuracy for software defect prediction,adopt a new method named Cost-Censitive Laplacian Eigenmaps (CSLE) to reduce the dimensionality of original sample space, improving the distance measurement method of Laplacian Eigenmaps (LE) to enhance the dimension reduction mapping accuracy. In addition,propose a new method named Cost Sensitive Back Propagation Neural Network (CSBPNN) to classify the software module,adjusting the weights and bias parameters of BP neural net-work,which makes the error of BP neural network to flawed software modules points more sensitive,further improving the classification effect. Compared with the latest several software defect prediction methods on NASA software datasets,prove that this method can im-prove the recall rate and F-measure value in software defect prediction.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(11):47.
[11]王晴[],荆晓远[][],朱阳平[],等. 基于局部稀疏重构度量学习的软件缺陷预测[J].计算机技术与发展,2016,26(11):54.
 WANG Qing[],JING Xiao-yuan[][],ZHU Yang-ping[],et al. Software Defect Prediction of Metric Learning Based on Local Sparse Reconstruction[J].,2016,26(11):54.
[12]张志武[],荆晓远[][],吴飞[]. 基于非负稀疏图的协同训练软件缺陷预测[J].计算机技术与发展,2017,27(07):38.
 ZHANG Zhi-wu[],JING Xiao-yuan[] [],WU Fei[]. Defect Prediction of Co-training Software with Non-negative Sparse Graph[J].,2017,27(11):38.

更新日期/Last Update: 2016-01-05