[1]余琨,荆晓远,吴飞,等. 基于竞争聚集的K-SVD字典学习算法[J].计算机技术与发展,2015,25(11):44-48.
 YU Kun,JING Xiao-yuan,WU Fei,et al. K-SVD Dictionary Learning Algorithm Based on Competitive Agglomeration[J].,2015,25(11):44-48.
点击复制

 基于竞争聚集的K-SVD字典学习算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年11期
页码:
44-48
栏目:
智能、算法、系统工程
出版日期:
2015-11-10

文章信息/Info

Title:
 K-SVD Dictionary Learning Algorithm Based on Competitive Agglomeration
文章编号:
1673-629X(2015)11-0044-05
作者:
 余琨荆晓远吴飞姚永芳
 南京邮电大学 自动化学院
Author(s):
 YU KunJING Xiao-yuanWU FeiYAO Yong-fang
关键词:
 稀疏表示字典学习聚类竞争聚集K-SVD算法
Keywords:
 sparse representationdictionary learningclusteringcompetitive agglomerationK-SVD algorithm
分类号:
TP301.6
文献标志码:
A
摘要:
 在基于稀疏表示分类的模式识别中,字典学习可以为稀疏表示获得更为精简的数据表示.然而,字典大小是衡量识别精度和速度的重要因素,优化字典设计能同时满足这两方面的需求.文中提出了一种新的技术叫作基于竞争聚集的K奇异值字典学习方法(CA-KSVD).该方法优化了字典的大小,并同时保证了识别的准确率.CA-KSVD将竞争聚集算法中优化簇数的原理引入K-SVD,从而提高了K-SVD的字典学习能力.优化过程从输入大量字典原子开始,逐步减少那些未充分利用或相似的原子,最后得到高性能的字典,它不再包含那些冗余的原子.Extend YaleB和AR人脸数据库上的实验结果表明了文中算法的有效性.
Abstract:
 In pattern recognition based on sparse representation classification,concise representation of date can be obtained for sparse rep-resentation via dictionary learning. However,the size of dictionary is an important tradeoff between recognition speed and accuracy,the design of optimized dictionary can satisfy requirements of two aspects simultaneously. A novel technique called the K -SVD dictionary learning algorithm based on competitive agglomeration (CA-KSVD) is proposed,which finds a dictionary with optimized size without compromising its recognition accuracy. CA-KSVD improves the K-SVD dictionary learning algorithm by introducing a mechanism to K-SVD,the mechanism in competitive agglomeration can optimize dictionary size. Optimization procedure starts with a large number of dictionary atoms and gradually reduces the under-utilized or similar atoms to produce a high-performance dictionary that has no redun-dant atoms. Experimental results with Extend YaleB and AR databases demonstrate the effectiveness of the method in this paper.

相似文献/References:

[1]朱伟冬 胡剑凌.基于马氏距离的稀疏表示分类算法[J].计算机技术与发展,2011,(11):27.
 ZHU Wei-dong,HU Jian-ling.Sparse Representation Classification Algorithm Based on Mahalanobis Distance[J].,2011,(11):27.
[2]王韦刚 庄伟胤.基于NIOS Ⅱ的图像压缩感知[J].计算机技术与发展,2012,(04):12.
 WANG Wei-gang,ZHUANG Wei-yin.Compressed Sensing of Image Based on NIOS Ⅱ[J].,2012,(11):12.
[3]葛广重,杨敏.基于稀疏表示的单幅图像超分辨率重建[J].计算机技术与发展,2013,(09):113.
 GE Guang-zhong,YANG Min.Single Image Super-resolution Reconstruction Based on Sparse Representation[J].,2013,(11):113.
[4]赵海峰,于雪敏,邹际祥,等.基于L1范数主成分分析的颅脑图像恢复[J].计算机技术与发展,2014,24(01):231.
 ZHAO Hai-feng[],YU Xue-min[],ZOU Ji-xiang[],et al.Cerebral Image Recovery Based on L1-norm Principal Component Analysis[J].,2014,24(11):231.
[5]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[6]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[7]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[8]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[9]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[10]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[11]陈静,邱晓晖,孙娜. 基于二维Gabor小波与SPP算法的人脸识别研究[J].计算机技术与发展,2014,24(11):110.
 CHEN Jing,QIU Xiao-hui,SUN Na. Research on Face Recognition Based on 2 D Gabor Wavelet and SPP Algorithm[J].,2014,24(11):110.
[12]姚刚,杨敏. 稀疏子空间聚类的惩罚参数自调整交替方向法[J].计算机技术与发展,2014,24(11):131.
 YAO Gang,YANG Min. Alternating Direction Method of Self-adjusting Penalty Parameters of Sparse Subspace Clustering[J].,2014,24(11):131.
[13]钱阳,李雷. 一种基于新型KPCA算法的视频压缩感知算法[J].计算机技术与发展,2015,25(10):101.
 QIAN Yang,LI Lei. A Video Compressed Sensing Algorithm Based on Novel KPCA[J].,2015,25(11):101.
[14]谢文浩,翟素兰. 基于加权稀疏近邻表示的人脸识别[J].计算机技术与发展,2016,26(02):22.
 XIE Wen-hao,ZHAI Su-lan. Face Recognition Based on Weighted Sparse Neighbor Representation[J].,2016,26(11):22.
[15]李欣,崔子冠,陈杰,等. 基于局部回归和自相似性的图像超分辨率重建[J].计算机技术与发展,2016,26(10):17.
 LI Xin,CUI Zi-guan,CHEN Jie,et al. Image Super-resolution Reconstruction Based on Local Regression and Self-similarity[J].,2016,26(11):17.
[16]王晴[],荆晓远[][],朱阳平[],等. 基于局部稀疏重构度量学习的软件缺陷预测[J].计算机技术与发展,2016,26(11):54.
 WANG Qing[],JING Xiao-yuan[][],ZHU Yang-ping[],et al. Software Defect Prediction of Metric Learning Based on Local Sparse Reconstruction[J].,2016,26(11):54.
[17]钱阳,李雷. 基于新型鲁棒字典学习的视频帧稀疏表示[J].计算机技术与发展,2017,27(02):37.
 QIAN Yang,LI Lei. Sparse Representation of Video Frame Based on Novel Robust Dictionary Learning[J].,2017,27(11):37.
[18]钱阳,李雷,石曼曼. 基于双稀疏字典的新型盲压缩感知模型[J].计算机技术与发展,2017,27(05):35.
 QIAN Yang,LI Lei,SHI Man-man. A Novel Blind Compressed Sensing Model Based on DoubleSparsity Dictionary[J].,2017,27(11):35.
[19]钱阳,李雷,袁安安. 基于自适应K-SVD字典的视频帧稀疏重建算法[J].计算机技术与发展,2017,27(06):36.
 QIAN Yang,LI Lei,YUAN An-an. An Adaptive K-SVD Dictionary Learning Algorithm for Video Frame Sparse Reconstruction[J].,2017,27(11):36.
[20]谢尚高,王丽平. 基于同类测试样本组的稀疏表示人脸识别[J].计算机技术与发展,2017,27(08):7.
 XIE Shang-gao,WANG Li-ping. Sparse Representation Classification for Face Recognition with Intra-class Testing-sample Group[J].,2017,27(11):7.

更新日期/Last Update: 2015-12-25