[1]田亚凯,陈小惠. 改进关联规则算法在医疗监控中的应用[J].计算机技术与发展,2015,25(10):183-186.
 TIAN Ya-kai,CHEN Xiao-hui. Application of an Improved Algorithm of Association Rules in Health Monitoring Center[J].,2015,25(10):183-186.
点击复制

 改进关联规则算法在医疗监控中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年10期
页码:
183-186
栏目:
应用开发研究
出版日期:
2015-10-10

文章信息/Info

Title:
 Application of an Improved Algorithm of Association Rules in Health Monitoring Center
文章编号:
1673-629X(2015)10-0173-04
作者:
 田亚凯陈小惠
 南京邮电大学 自动化学院
Author(s):
 TIAN Ya-kaiCHEN Xiao-hui
关键词:
 数据挖掘关联规则Apriori算法医疗监护
Keywords:
 data miningassociation ruleApriori algorithmmedical monitoring
分类号:
TP39
文献标志码:
A
摘要:
 为了方便监护人员能够从监控中心的数据库中及时获取病人的生理参数和病情的关系,文中提出一种改进的Apriori算法。该算法充分利用医疗数据的特点,把整条事务当作一个属性,避免了传统Apriori算法反复扫描事务数据库,从而简化了生成频繁项集的过程。为了验证改进Apriori算法的有效性和可行性,文中将此算法与传统的Apriori算法分别应用到监护系统中,对这两种算法的运行结果进行了对比。结果表明,改进Apriori算法在效率上有明显提高,为监护人员针对一些突发性疾病做出及时诊断提供了良好的决策支持。
Abstract:
 In order to facilitate supervisors to get the relationship between physiological parameters and disease of patients from monitoring center database timely,put forward a kind of improved Apriori algorithm. The algorithm makes full use of the characteristics of medical data and regards the entire transaction as an attribute,avoiding the operation that traditional Apriori algorithm repeatedly scans the transac-tion database,so that simplifies the process while generating candidate sets. In order to verify the effectiveness and feasibility of the im-proved Apriori algorithm,both the Apriori algorithm and the new algorithm are applied to the monitoring system,also the results of the two algorithms are compared. The results show that the improved Apriori algorithm has obvious improvement in efficiency,providing a good decision support about some sudden illness for the care staff timely.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(10):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(10):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(10):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(10):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(10):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(10):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(10):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(10):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(10):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(10):113.
[11]李蓉,周维柏. 基于多特征选取和类完全加权的入侵检测[J].计算机技术与发展,2014,24(07):145.
 LI Rong,ZHOU Wei-bai. Intrusion Detection Based on Multiple Feature Selection and Class Fully Weighted [J].,2014,24(10):145.
[12]占美星[],杨颖[],杨磊[]. 基于树结构多重最小支持度的挖掘算法研究[J].计算机技术与发展,2014,24(08):45.
 ZHAN Mei-xing[],YANG Ying[],YANG Lei[]. Study on Mining Algorithm Based on Tree Structure Multiple Minimum Supports[J].,2014,24(10):45.
[13]于海平[],林晓丽[],刘会超[]. 基于数据挖掘的移动广告个性化推荐研究[J].计算机技术与发展,2014,24(08):234.
 YU Hai-ping[],LIN Xiao-li[],LIU Hui-chao[]. Research of Mobile Internet Advertising Personalized Recommendation Based on Data Mining[J].,2014,24(10):234.
[14]孙媛,黄刚. 基于Hadoop平台的C4.5算法的分析与研究[J].计算机技术与发展,2014,24(11):83.
 SUN Yuan,HUANG Gang. Analysis and Study of C4 . 5 Algorithm Based on Hadoop Platform[J].,2014,24(10):83.
[15]牛永洁,薛苏琴. 基于PDFBox抽取学术论文信息的实现[J].计算机技术与发展,2014,24(12):61.
 NIU Yong-jie,XUE Su-qin. Realization of Extraction of Academic Papers Information Based on PDFBox[J].,2014,24(10):61.
[16]郑超,高茂庭,吴爱华. 基于RFID及其路径约束的生产检查流程控制[J].计算机技术与发展,2015,25(02):225.
 ZHENG Chao,GAO Mao-ting,WU Ai-hua. Production Testing Process Control Based on RFID with Path Constraint[J].,2015,25(10):225.
[17]顾伟[][],傅德胜[][],蔡玮[]. 基于命题逻辑的关联规则挖掘算法[J].计算机技术与发展,2015,25(03):91.
 GU Wei[][],FU De-sheng[][],CAI Wei[]. Association Rules Mining Algorithm Based on Propositional Logic[J].,2015,25(10):91.
[18]陈运文,吴飞,吴庐山,等. 基于异常检测的时间序列研究[J].计算机技术与发展,2015,25(04):166.
 CHEN Yun-wen,WU Fei,WU Lu-shan,et al. Research on Time Series Based on Anomaly Detection[J].,2015,25(10):166.
[19]王晓鹏,武彤. 生产质量控制数据仓库模型设计与实现[J].计算机技术与发展,2015,25(06):181.
 WANG Xiao-peng,WU Tong. Design and Realization of Data Warehouse Model on Production Quality Control[J].,2015,25(10):181.
[20]王玉雷,李玲娟. 一种密度和划分结合的聚类算法[J].计算机技术与发展,2015,25(09):53.
 WANG Yu-le,LI Ling-juan. A Clustering Algorithm of Combination of Density and Division[J].,2015,25(10):53.

更新日期/Last Update: 2015-11-13