[1]张峰,尹丽,石现峰. 振动信号的最小方差谱估计算法[J].计算机技术与发展,2015,25(10):76-79.
 ZHANG Feng,YIN Li,SHI Xian-feng. Minimum-variance Spectral Estimation Algorithm for Vibration Signal[J].,2015,25(10):76-79.
点击复制

 振动信号的最小方差谱估计算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年10期
页码:
76-79
栏目:
智能、算法、系统工程
出版日期:
2015-10-10

文章信息/Info

Title:
 Minimum-variance Spectral Estimation Algorithm for Vibration Signal
文章编号:
1673-629X(2015)10-0076-04
作者:
 张峰尹丽石现峰
 西安工业大学
Author(s):
 ZHANG FengYIN LiSHI Xian-feng
关键词:
 振动信号谱估计最小方差阶次信息论准则
Keywords:
 vibration signalspectrum estimationMVSEorderAIC
分类号:
TP301.6
文献标志码:
A
摘要:
 振动信号功率谱分析常用方法是周期图法及其改进算法,存在方差性能与分辨力性能的矛盾,当振动信号采样点数较少时,应用存在局限。为了解决这一问题,引入了最小方差谱估计算法,并通过信息论准则确定其最优阶次,以及通过加最优窗进一步提高其方差性能。结合工业现场实测信号,基于MATLAB环境对其实际性能进行了分析与仿真,并与经典谱估计算法以及AR模型算法进行了对比。理论分析与仿真结果表明,最优阶次下的最小方差谱估计算法,性能优于经典算法,分辨力性能与AR模型算法相当,但方差性能较好,有利于振动信号的分析。
Abstract:
 The methods that often used in power spectrum analysis of vibration signal are Periodogram and its improved algorithms,which have the conflict between variance performance and resolution performance,so the analysis effect is worse when the sample length of tur-bine’ s vibration signal is relatively short. Introduce MVSE algorithm to solve this problem,and through the AIC determining its optimal order times,the same time by adding the variance of the best window to further improve its performance. Combined with the turbine’ s vi-bration signals collected in industrial site,the actual performance of the MVSE method is simulated and analyzed through MATLAB. And the performance of the method is compared with the performance of classical methods and AR model method. The theoretical analysis and simulation result show that MVSE algorithm with optimal order is better than the classical algorithm,and the resolution performance of MVSE and AR model algorithm is fairly,but the variance performance of MVSE algorithm is better,which is advantageous to the vibra-tion signal analysis.

相似文献/References:

[1]张峰,马舒啸,石现峰.基于循环维纳滤波的振动信号去噪算法研究[J].计算机技术与发展,2014,24(06):49.
 ZHANG Feng,MA Shu-xiao,SHI Xian-feng.Research on Denoising Algorithm of Vibration Signal Based on Cricular Wiener Filtering[J].,2014,24(10):49.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.

更新日期/Last Update: 2015-11-12