[1]朱永华,林举,吴志国,等. 基于时间加权连接的完全三部图推荐算法[J].计算机技术与发展,2015,25(10):44-48.
 ZHU Yong-hua,LIN Ju,WU Zhi-guo,et al. Complete Tripartite Graphs Recommendation Algorithm Based on Time-weighted Connections[J].,2015,25(10):44-48.
点击复制

 基于时间加权连接的完全三部图推荐算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年10期
页码:
44-48
栏目:
智能、算法、系统工程
出版日期:
2015-10-10

文章信息/Info

Title:
 Complete Tripartite Graphs Recommendation Algorithm Based on Time-weighted Connections
文章编号:
1673-629X(2015)10-0044-05
作者:
 朱永华林举吴志国沈熠
 上海大学 计算机工程与科学学院
Author(s):
 ZHU Yong-huaLIN JuWU Zhi-guoSHEN Yi
关键词:
 个性化推荐社会化标签完全三部图时间加权连接
Keywords:
 personalized recommendationsocial tagscomplete tripartite graphstime-weighted connections
分类号:
TP391
文献标志码:
A
摘要:
 基于社会化标签的个性化推荐已成为推荐领域关注的热点问题,但面临着用户信息丢失、时间效应和用户兴趣迁移等一系列挑战。文中基于用户行为数据建立用户-物品-标签完全三部图模型,并基于此提出个性化物品推荐算法。该方法首先对用户兴趣动态迁移现象进行分析,其次综合考虑用户-物品-标签三者关系,提出了完全三部图模型,接着引入时间加权连接权重来构建新的连接关系矩阵,最后在此基础上运行MassDiffusion推荐算法,通过综合两个方向的物质扩散来获得推荐结果。实验结果表明,文中算法能够通过反映用户兴趣的动态迁移,有效地提高推荐的准确性和多样性。
Abstract:
 Personalized recommendation based on social tagging has become a key research topic in the field of recommendation. Current recommending methods,however,are facing a series of challenges,such as the loss of user information,the effect of time and user interest migration. A new personalized recommendation algorithm based on user-item-tag complete tripartite graph model derived from the user behavior is proposed. Firstly,research on dynamic migration of user interest is carried out. Secondly,user-item-tag complete tripartite graph model is proposed with comprehensive consideration of user-item-tag relationships. Time-weighted connections is employed to construct the new connection matrix. Finally,MassDiffusion algorithm is executed to carry out personalized recommendation based on the model through combining two directions of mass diffusion. Experimental results demonstrate that the algorithm can effectively improve the accuracy and diversity of recommendation through reflecting the dynamic migration of user interest.

相似文献/References:

[1]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(10):69.
[2]曹毅 贺卫红.基于内容过滤的电子商务推荐系统研究[J].计算机技术与发展,2009,(06):182.
 CAO Yi,HE Wei-hong.Research on E- Commerce Recommender System Based on Content - Based Filtering[J].,2009,(10):182.
[3]汤亚玲 秦峰.Web行为下的正向关联规则挖掘研究[J].计算机技术与发展,2007,(08):40.
 TANG Ya-ling,QIN Feng.Research of Forward Association Rules Mining Under Web Behaviour[J].,2007,(10):40.
[4]卫琳.基于搜索结果的个性化推荐系统研究[J].计算机技术与发展,2007,(09):65.
 WEI Lin.A Study of Personalization Recommendation System Based on Search Result[J].,2007,(10):65.
[5]但微 才书训.电子商务中Web挖掘技术的应用探讨[J].计算机技术与发展,2006,(01):207.
 DAN Wei,CAI Shu-xun.Using Web Mining in Electronic Commerce[J].,2006,(10):207.
[6]王嫣然 陈梅 王翰虎 张鑫.一种基于内容过滤的科技文献推荐算法[J].计算机技术与发展,2011,(02):66.
 WANG Yan-ran,CHEN Mei,WANG Han-hu,et al.A Content-Based Filtering Algorithm for Scientific Literature Recommendation[J].,2011,(10):66.
[7]杨晶,成卫青,郭常忠.基于标准标签的用户兴趣模型研究[J].计算机技术与发展,2013,(10):208.
 YANG Jing[],CHENG Wei-qing[],GUO Chang-zhong[].Research on User Interest Model Based on Standard Tag[J].,2013,(10):208.
[8]殷凤霞.社会网络中基于内容语义的新闻推荐方法研究[J].计算机技术与发展,2013,(10):253.
 YIN Feng-xia.Research on Method of News Recommendation Based on Content Semantic in Social Network[J].,2013,(10):253.
[9]黄谭,苏一丹.基于混合用户模型的二分图推荐算法[J].计算机技术与发展,2014,24(06):145.
 HUANG Tan,SU Yi-dan.Bipartite Graph Recommendation Algorithm Based on Hybrid User Model[J].,2014,24(10):145.
[10]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[11]吴楠,秦锋,姜太平. 一种基于用户情境聚类的个性化推荐算法[J].计算机技术与发展,2014,24(10):106.
 WU Nan,QIN Feng,JIANG Tai-ping. A Personalized Recommendation Algorithm Based on User Context Clustering[J].,2014,24(10):106.
[12]何绯娟,缪相林,许大炜,等. 基于“读者-图书”二部图的个性化图书推荐方法[J].计算机技术与发展,2015,25(05):25.
 HE Fei-juan,MIAO Xiang-lin,XU Da-wei,et al. Personalized Recommendation of Books Based on “Reader-Book”Bipartite Graph[J].,2015,25(10):25.
[13]邰淳亮[],谢怡[],孙知信[][]. 一种基于用户兴趣的位置服务推荐算法[J].计算机技术与发展,2017,27(09):64.
 TAI Chun-liang[],XIE Yi[],SUN Zhi-xin[][]. A Recommendation Algorithm of Location Service Based on User Interest[J].,2017,27(10):64.
[14]方超,暴建民,薛四猛. 基于领域特征值的协同过滤个性化推荐方法[J].计算机技术与发展,2017,27(11):88.
 FANG Chao,BAO Jian-min,XUE Si-meng. A Personalized Collaborative Filtering Recommendation Method Based on Domain Features[J].,2017,27(10):88.

更新日期/Last Update: 2015-11-09