[1]邵曦,陶凯云. 基于音乐内容和歌词的音乐情感分类研究[J].计算机技术与发展,2015,25(08):184-187.
 SHAO Xi,TAO Kai-yun. Research on Music Emotion Classification Based on Music Content and Lyrics[J].,2015,25(08):184-187.
点击复制

 基于音乐内容和歌词的音乐情感分类研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年08期
页码:
184-187
栏目:
应用开发研究
出版日期:
2015-08-10

文章信息/Info

Title:
 Research on Music Emotion Classification Based on Music Content and Lyrics
文章编号:
1673-629X(2015)08-0184-04
作者:
 邵曦陶凯云
 南京邮电大学 通信与信息工程学院
Author(s):
 SHAO Xi TAO Kai-yun
关键词:
 音乐情感分类CHI特征选择潜在语义分析多模态融合
Keywords:
 music emotion classificationCHI feature selectionLSA multi-modal fusion
分类号:
TP39
文献标志码:
A
摘要:
 针对音乐情感分类问题,为了弥补仅仅利用音乐内容进行音乐情感分类的单一模态分类方法的不足,文中提出了结合音乐内容和歌词的多模态音乐情感分类的方法。主要探讨了如何利用歌词对音乐进行情感分类以及结合歌词和音乐内容以达到提高分类准确率的效果。对歌词进行特征选择时,分别利用CHI特征选择算法和潜在语义分析( LSA)对歌词进行降维处理,有效去除了噪声,提高了分类效率。针对多模态融合问题,在传统的LFSM融合方法的基础上,提出了改进的LFSM融合方法,并通过实验验证了该方法的可行性;同时将该方法与其他传统的融合方法的分类效果进行了比较。结果表明,改进的LFSM融合方法的分类准确率最高,达到了79.51%,验证了该方法的有效性。
Abstract:
 According to the music emotion classification,an approach of multi-modal music emotion category combining music content and lyrics is proposed to compensate for lack of the single modal music emotion classification method that only uses music content for classification. Mainly discuss how to use lyrics for music emotion classification and combine music lyrics and content to improve the clas-sification accuracy. Using feature selection algorithm based on CHI and quadratic dimension reduction method based on Latent Semantic Analysis ( LSA) effectively improves the efficiency of text classification. For multi-modal fusion problem,propose an improved LFSM fusion method based on the traditional LFSM fusion method,and verify its feasibility through some experiments and compare the im-proved LFSM fusion method with the others. The results show that the accuracy of the improved method is highest,reaching 79. 51%, that verify the effectiveness of the method.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(08):47.
[11]邵曦,汪慧敏. 基于k平面分段回归的音乐情感分类[J].计算机技术与发展,2015,25(06):166.
 SHAO Xi,WANG Hui-min. Music Emotion Classification Based on k-plane Piecewise Regression[J].,2015,25(08):166.

更新日期/Last Update: 2015-09-14