[1]唐上进,周井泉,张卓. 基于模糊神经PID的主动队列管理方法研究[J].计算机技术与发展,2015,25(08):99-102.
 TANG Shang-jin,ZHOU Jing-quan,ZHANG Zhuo. Research on Active Queue Management Based on Fuzzy Neural PID Controller[J].,2015,25(08):99-102.
点击复制

 基于模糊神经PID的主动队列管理方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年08期
页码:
99-102
栏目:
智能、算法、系统工程
出版日期:
2015-08-10

文章信息/Info

Title:
 Research on Active Queue Management Based on Fuzzy Neural PID Controller
文章编号:
1673-629X(2015)08-0099-04
作者:
 唐上进周井泉张卓
 南京邮电大学 电子科学与工程学院
Author(s):
 TANG Shang-jinZHOU Jing-quanZHANG Zhuo
关键词:
 模糊逻辑神经网络主动队列管理比例微分积分器
Keywords:
 fuzzy logicneural networkactive queue managementPID controller
分类号:
TP301
文献标志码:
A
摘要:
 PID作为主动队列管理中的重要算法,存在参数不能实时调节、不能适应非线性和动态的网络环境等问题。为了克服这些问题,文中引入基于Mandani规则的模糊逻辑和三层神经网络PID,提出了基于模糊神经PID( FNPID)的主动队列管理算法。该算法利用模糊逻辑计算当前网络学习速率,在神经网络PID中利用加权动量的梯度下降法,根据可变的学习速率来计算相应的丢包率。为使FNPID算法更具有适应性,文中将队列长度和包到达速率作为共同度量,并在丢包率合成时采取动态权重。基于NS2仿真平台,在相同网络环境下对PID算法和FNPID算法的性能进行对比研究。仿真结果表明,相比于PID算法,FNPID算法在稳定队列长度和降低平均时延的同时能使队列长度迅速收敛到期望值,具有较强的适应性和鲁棒性。
Abstract:
 As a significant algorithm in active queue management,PID algorithm exists shortcomings that parameters cannot be adjust in real time and cannot be adapted to the dynamic and nonlinear network. For these shortcomings,fuzzy logic based on Mandani rules and 3-level neural network PID are introduced and an active queue management algorithm based on fuzzy neural PID ( FNPID) algorithm is presented. Fuzzy logic part is used to compute the learning rate,then neural network PID calculates the packet loss rate by using weighted momentum gradient learning algorithm. In order to make FNPID algorithm more adaptable,packet arrival rate as same as queue length is taken into consideration,dynamic weight is used in the packet loss rate combination. Under the same network environment,the perform-ance of PID algorithm and FNPID algorithm are compared and researched based on NS2 simulation platform. Simulation results show that FNPID algorithm has stronger adaptability and robustness than PID algorithm,for it can rapidly converge queue length to expected value while maintaining queue stability and reducing the average delay.

相似文献/References:

[1]杨凯 华庆一 陈新胜.一种交互式识别几何图形的简易方法[J].计算机技术与发展,2008,(03):21.
 YANG Kai,HUA Qing-yi,CHEN Xin-sheng.A Simple Approach to Recognise Geometric Shapes Interactively[J].,2008,(08):21.
[2]许普乐 夏明波 金士尧.主动式集群中模糊逻辑及其改进研究[J].计算机技术与发展,2007,(07):120.
 XU Pu-le,XIA Ming-bo,JIN Shi-yao.Fuzzy Logic and Its Improvement in Active Self-Allocating Cluster[J].,2007,(08):120.
[3]廖锦舜 何锫.基于模糊神经网络的软件质量评价方法[J].计算机技术与发展,2006,(02):194.
 LIAO Jin-shun,HE Pei.Method of Software Quality Evaluation Based on Fuzzy Neural Network[J].,2006,(08):194.
[4]李向阳 李玲娟 陈建新 徐小龙.面向情境感知的不确定性数据融合策略[J].计算机技术与发展,2012,(02):127.
 LI Xiang-yang,LI Ling-juan,CHEN Jian-xin,et al.Strategy of Uncertainty Data Fusion for Context-Awareness[J].,2012,(08):127.
[5]王大将 王敏.软计算融合技术研究[J].计算机技术与发展,2012,(04):97.
 WANG Da-jiang,WANG Min.Research on Fusion Technology of Soft Computing[J].,2012,(08):97.
[6]李云峰 王琛.装备制造企业供应商综合评价系统[J].计算机技术与发展,2012,(04):149.
 LI Yun-feng,WANG Chen.Evaluation System on Vendor of Large-Sized Equipment Manufacturers[J].,2012,(08):149.
[7]王理想,刘波,林伟伟.基于模糊预测的数据复制优化模型的研究[J].计算机技术与发展,2013,(12):82.
 WANG Li-xiang[],LIU Bo[],LIN Wei-wei[].Research on Data Replication Optimization Model Based on Fuzzy Forecasting[J].,2013,(08):82.
[8]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[9]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[10]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[11]杜睿山,李阳,曹茂俊,等. 基于AHP的油田产能建设项目后评价模型研究[J].计算机技术与发展,2014,24(11):203.
 DU Rui-shan,LI Yang,CAOMao-jun,et al. Research on Post Evaluation Model for Productivity Construction Project of Oilfield Based on AHP[J].,2014,24(08):203.

更新日期/Last Update: 2015-09-11