[1]宋侃. 基于改进视觉注意模型的显著区域区检测[J].计算机技术与发展,2015,25(07):234-237.
 SONG Kan. Region of Interest Detection Based on Improved Visual Attention Model[J].,2015,25(07):234-237.
点击复制

 基于改进视觉注意模型的显著区域区检测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年07期
页码:
234-237
栏目:
应用开发研究
出版日期:
2015-07-10

文章信息/Info

Title:
 Region of Interest Detection Based on Improved Visual Attention Model
文章编号:
1673-629X(2015)07-0234-04
作者:
 宋侃
 安徽大学 计算机科学与技术学院
Author(s):
 SONG Kan
关键词:
 视觉注意模型Itti模型显著图多尺度变换
Keywords:
 visual attention modelItti modelsaliencymulti-scale transform
分类号:
TP301
文献标志码:
A
摘要:
 文中在专家学者提出的视觉注意模型的基础上,提出一种新的视觉注意模型改进算法。首先,采用改进后的Itti模型来计算图像视觉显著性,从底层特征,包括亮度、方向、颜色,然后建立小波金字塔,利用中央周围算子作差运算,得到颜色、亮度和方向每个特征的关注图,然后通过归一化算子,融合成Itti模型下的显著图;接着,借鉴了MA和Zhang等提出的显著图模型算法的一些方法,从全局的角度计算显著图;最后将以上得到的显著图进行归一化融合。
Abstract:
 In this paper,propose a new visual attention model improvement algorithm based on the visual attention model proposed by ex-perts. First,the improved Itti model is used to compute the visual saliency of image,from low-level features including color,brightness and direction,then construct a wavelet Pyramid,using the central peripheral operator for difference operation to attain the concern graph of each feature of color,brightness and direction,and then through the normalized operator,merging into the saliency map of Itti model. Next,drawing on the experience of algorithm proposed by MA and Zhang etc,calculate the saliency map from a global perspective. Final-ly the saliency map above are normalized fusion.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.
[11]安军,周宁宁. 一种基于视觉注意模型的SSIM改进方法[J].计算机技术与发展,2015,25(01):226.
 AN Jun,ZHOU Ning-ning. An Improved Method of SSIM Based on Visual Attention Model[J].,2015,25(07):226.

更新日期/Last Update: 2015-09-08