[1]朱乔亚,陈可佳,方彪. 采用位置信息的半监督链接预测方法[J].计算机技术与发展,2015,25(07):63-66.
 ZHU Qiao-ya,CHEN Ke-jia,FANG Biao. A Semi-supervised Link Prediction Method Using Place Features[J].,2015,25(07):63-66.
点击复制

 采用位置信息的半监督链接预测方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年07期
页码:
63-66
栏目:
智能、算法、系统工程
出版日期:
2015-07-10

文章信息/Info

Title:
 A Semi-supervised Link Prediction Method Using Place Features
文章编号:
1673-629X(2015)07-0063-04
作者:
 朱乔亚陈可佳方彪
 南京邮电大学 计算机学院
Author(s):
 ZHU Qiao-yaCHEN Ke-jiaFANG Biao
关键词:
 基于位置的网络链接预测半监督学习社会网络分析
Keywords:
 location-based networklink predictionsemi-supervised learningsocial network analysis
分类号:
TP39
文献标志码:
A
摘要:
 链接预测是社会网络分析领域的一个关键问题,如何从网络的已知信息有效预测网络的未知信息面临巨大的挑战。为了有效利用网络中大量未连接的节点及节点对信息,文中将节点的位置信息(签到信息)加入到线社交网络中,并将节点的位置信息引入基于半监督的链接预测方法( LB-SSLP方法),根据用户之间的关系以及位置签到信息预测用户未来可能的签到位置,同时与传统的SSLP方法和SLP方法进行对比。在现实数据集Gowalla中的实验结果表明,位置信息的引入以及半监督学习的使用均能有效提高链接预测方法的准确率。
Abstract:
 Link prediction is a key issue in the research area of social network analysis,aiming to predict unknown links from the known network. In order to make full use of the information of nodes and node pairs with no connection,add the place features to the online so-cial networks ( check-ins) and join it to a semi-supervised link prediction method ( LB-SSLP) so that the future possible location of a user can be predicted according to the relationship with other users and his check-ins,at the same time,compare with the traditional SSLP method and SLP method. The experimental results in a real dataset Gowalla show that both the use of place features and semi-supervised learning make the proposed method perform a higher prediction accuracy.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.

更新日期/Last Update: 2015-09-06