[1]吴家皋,刘杰,钱科宇,等. 基于改进排序算法的用户查询优化的研究[J].计算机技术与发展,2015,25(07):49-53.
 WU Jia-gao,LIU Jie,QIAN Ke-yu,et al. Research on User’ s Query Optimization Based on Improved Sorting Algorithm[J].,2015,25(07):49-53.
点击复制

 基于改进排序算法的用户查询优化的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年07期
页码:
49-53
栏目:
智能、算法、系统工程
出版日期:
2015-07-10

文章信息/Info

Title:
 Research on User’ s Query Optimization Based on Improved Sorting Algorithm
文章编号:
1673-629X(2015)07-0049-05
作者:
 吴家皋刘杰钱科宇李云
 1.南京邮电大学 计算机学院;2.江苏省无线传感网高技术研究重点实验室
Author(s):
 WU Jia-gaoLIU JieQIAN Ke-yuLI Yun
关键词:
 搜索引擎PageRank排序分类词频-逆向词频
Keywords:
 search enginePageRanksortclassificationTF-IDF
分类号:
TP301
文献标志码:
A
摘要:
 互联网的迅速发展使信息检索的环境发生了重大变化。而基于互联网的搜索引擎的排序算法直接关系到用户在新的环境里进行信息检索的使用体验。文中提出一种将PageRank算法、分类技术、文档tF-IDF(词频-逆向词频)值相结合的方法,对排序算法进行改进。该算法对于用户查询的关键字进行预分类,判断用户的输入关键字最可能属于的文本类型。基于此优先从Solr库中取出类别相似的数据,使得主题相关的文本靠前显示。实验结果表明,该排序算法具有较快的查询响应时间和较高的查准率
Abstract:
 The rapid development of the Internet makes information retrieval environment has undergone major changes. The ranking algo-rithm based on Internet search engine directly influences the user experience in a new environment for information retrieval. In this paper, an improved sorting algorithm was proposed in which the PageRank algorithm,classification techniques,documentation TF-IDF ( Term Frequency-Inverse Term Frequency) values were combined to improve the sorting algorithm. The keywords of the user’ s queries are pre-classified to predict which class are the user’ s text input keywords most likely belong to. Similar data are taken from Solr library based on this,making the front display text relevant to the subject. Experiments results show that the sorting algorithm has faster query response time and high precision.

相似文献/References:

[1]盛启东 谭守标 徐超 冯二媛 陈军宁.巧用黑盒法逆推百度中文分词算法[J].计算机技术与发展,2010,(04):136.
 SHENG Qi-dong,TAN Shou-biao,XU Chao,et al.Inferring Baidu's Chinese Word Segmentation Algorithm by Supposing a Black Box[J].,2010,(07):136.
[2]陈勇 刘勇.中医药主题搜索网络机器人的设计与实现[J].计算机技术与发展,2010,(05):162.
 CHEN Yong,LIU Yong.Design and Implementation of Topic-Specific Robot for Traditional Chinese Medicine[J].,2010,(07):162.
[3]邓义乔 张代远.蚁群算法在搜索引擎系统中的应用研究[J].计算机技术与发展,2009,(12):21.
 DENG Yi-qiao,ZHANG Dai-yuan.Research and Application of Ant Colony Algorithm in Searching Engine System[J].,2009,(07):21.
[4]王攀 张顺颐 陈雪娇.基于动态行为轮廓库的Web用户行为分析关键技术[J].计算机技术与发展,2009,(02):20.
 WANG Pan,ZHANG Shun-yi,CHEN Xue-jiao.Key Technology of Web Users' Behavior Analysis Based on Dynamic Behavior Profile Database[J].,2009,(07):20.
[5]杜光芹 张化祥 赵瑞东.主题Web挖掘研究[J].计算机技术与发展,2008,(02):94.
 DU Guang-qin,ZHANG Hua-xiang,ZHAO Rui-dong.State of Topic Web Mining[J].,2008,(07):94.
[6]李文骏 崔志明.基于搜索引擎的Deep Web数据源发现技术[J].计算机技术与发展,2008,(08):58.
 LI Wen-jun,CUI Zhi-ming.Deep Web Source Discovery Based on Search Engine[J].,2008,(07):58.
[7]郑莉霞 刘连芳.可配置Web Robot的研究与实现[J].计算机技术与发展,2007,(06):83.
 ZHENG Li-xia,LIU Lian-fang.Research and Realization on Web Robot[J].,2007,(07):83.
[8]王萍 刘军 姚笑秋.基于小型搜索引擎的个性化策略研究[J].计算机技术与发展,2007,(11):36.
 WANG Ping,LIU Jun,YAO Xiao-qiu.Research of Personalized Strategy Based on Small Scaled Search Engine[J].,2007,(07):36.
[9]王小林 刘宏中.搜索引擎的设计研究[J].计算机技术与发展,2007,(02):5.
 WANG Xiao-lin,LIU Hong-shen.Study on the Development of Search Engine[J].,2007,(07):5.
[10]殷亚玲 张蕾.搜索引擎中语义相关反馈技术的研究[J].计算机技术与发展,2006,(02):167.
 YIN Ya-ling,ZHANG Lei.Research of Relevance Feedback Based on Semantic in Search Engine[J].,2006,(07):167.
[11]高国强,黄吕威,陈丰钰. 使用网络搜索引擎计算汉语词汇的语义相似度[J].计算机技术与发展,2014,24(07):84.
 GAO Guo-qiang,HUANG Lü-wei CHEN Feng-yu. Calculation of Chinese Words Semantic Similarity Using Network Search Engines[J].,2014,24(07):84.
[12]申健,柴艳娜. Web搜索引擎技术研究[J].计算机技术与发展,2016,26(12):30.
 SHEN Jian,CHAI Yan-na. Research on Web Search Engine Technology[J].,2016,26(07):30.
[13]杨伟超,马增军,耿卫. 基于Hubble.net的仓储系统设计与实现[J].计算机技术与发展,2017,27(10):181.
 YANG Wei-chao,MA Zeng-jun,GENG Wei. Design and Implementation of Massive Data Storage Service System Based on Hubble. net[J].,2017,27(07):181.

更新日期/Last Update: 2015-09-06