[1]王成国,邓仲元,陈海文,等.基于ARIMA模型的金融品种走势预测技术[J].计算机技术与发展,2015,25(07):11-14.
 WANG Cheng-guo,DENG Zhong-yuan,CHEN Hai-wen,et al. Financial Variety Trend Prediction Technology Based on ARIMA Model[J].,2015,25(07):11-14.
点击复制

基于ARIMA模型的金融品种走势预测技术()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年07期
页码:
11-14
栏目:
出版日期:
2015-07-10

文章信息/Info

Title:
 Financial Variety Trend Prediction Technology Based on ARIMA Model
文章编号:
1673-629X(2015)07-0011-04
作者:
 王成国邓仲元陈海文蔡志平
 国防科学技术大学 计算机学院
Author(s):
 WANG Cheng-guoDENG Zhong-yuanCHEN Hai-wenCAI Zhi-ping
关键词:
 时间序列差分自回归滑动平均模型平稳金融品种推荐模型预测
Keywords:
 time seriesauto-regressive integrated moving average modelsteadyfinancial products recommended prediction of model
分类号:
TP301
文献标志码:
A
摘要:
 利用金融品种的历史数据开展数据挖掘,有效预测金融品种的走势,为投资者提供决策导向具有广阔的市场前景和应用价值。文中针对金融品种走势预测的应用需求,深入分析金融品种的时间序列特征,总结出其除了包含常见的非线性、非平稳、动态等特征外,还具有高噪音和非正态等特点。基于求和自回归滑动平均模型,建立金融品种走势预测模型,通过实际数据验证了模型的有效性及预测的准确性。自回归滑动平均模型可用于金融品种的动态分析和短期预测。
Abstract:
 The use of data mining based on historical data of financial products can predict the trend of the financial variety,and it has wide application value and market prospects. According to the application demand of the forecast of the financial variety trend,analyze the characteristics of the time series of the financial variety deeply,and summarize that it not only contains the common characteristics of non-linear,non-stationary and dynamic,but also has the characteristics of high noise and non-normal distribution. Based on autoregressive moving average model,establish the forecasting model of the trend of the financial varieties,and verify the validity of the model and accu-racy of prediction on the basis of the actual data. The autoregressive moving average model can be used to dynamic analysis and make a short-term prediction of financial products.

相似文献/References:

[1]赵伟 梁循.互联网金融信息量与收益率波动关联研究[J].计算机技术与发展,2009,(12):1.
 ZHAO Wei,LIANG Xun.Research on Relationship Between Internet Financial Information and Fluctuation of Price - Earnings[J].,2009,(07):1.
[2]张虹 赵兵 钟华.基于小波多尺度的网络论坛话题热度趋势预测[J].计算机技术与发展,2009,(04):76.
 ZHANG Hong,ZHAO Bing,ZHONG Hua.Hot Trend Prediction of Network Forum Topic Based on Wavelet Multi - Resolution Analysis[J].,2009,(07):76.
[3]常毅 王加阳.时态信息系统转换方法研究[J].计算机技术与发展,2008,(07):15.
 CHANG Yi,WANG Jia-yang.Research on Method of Translating TIS to IS[J].,2008,(07):15.
[4]施尧 赵勇 杨雪洁 赵妹 张燕平 关有训 王克强.基于覆盖算法的大气质量预测[J].计算机技术与发展,2008,(07):190.
 SHI Yao,ZHAO Yong,YANG Xue-jie,et al.Application of Covering Algorithm to Prediction of Air Quality[J].,2008,(07):190.
[5]何星星 孙德山.模糊神经网络与SARIMA结合的时间序列预测模型[J].计算机技术与发展,2008,(08):61.
 HE Xing-xing,SUN De-shan.A Time Series Forecasting Model Using a Hybrid Fuzzy Neural Network and SARIMA[J].,2008,(07):61.
[6]兰妥 江弋 刘光生.基于Sas的时间序列缺失值处理方法比较[J].计算机技术与发展,2008,(10):43.
 LAN Tuo,JIANG Yi,LIU Guang-sheng.Comparison of Methods on Time Series' Missing Value Based on Sas[J].,2008,(07):43.
[7]查春生 倪志伟 倪丽萍 公维峰.基于相空间重构的股价时间序列相关性分析[J].计算机技术与发展,2010,(08):17.
 ZHA Chun-sheng,NI Zhi-wei,NI Li-ping,et al.Correlations Analysis Between Stock Index Time Serials Based on Reconstructed Phase Space[J].,2010,(07):17.
[8]贾瑞玉 王亮 王会颖.二维CVVT方法在时间序列分析中的应用研究[J].计算机技术与发展,2007,(05):160.
 JIA Rui-yu,WANG Liang,WANG Hui-ying.Research for Applications of 2D - CWT Approach in Time Series Analysis[J].,2007,(07):160.
[9]张诚 郑诚.基于时间的模糊关联规则挖掘[J].计算机技术与发展,2007,(07):60.
 ZHANG Cheng,ZHENG Cheng.Fuzzy Association Rules Mining over Time[J].,2007,(07):60.
[10]胡蓉.多输出支持向量回归及其在股指预测中的应用[J].计算机技术与发展,2007,(10):226.
 HE Rong.Application of Multi - Output Support Vector Regression in Stock Market Index Forecasting[J].,2007,(07):226.
[11]陈运文,吴飞,吴庐山,等. 基于异常检测的时间序列研究[J].计算机技术与发展,2015,25(04):166.
 CHEN Yun-wen,WU Fei,WU Lu-shan,et al. Research on Time Series Based on Anomaly Detection[J].,2015,25(07):166.
[12]程艳云,张守超,杨杨. 基于大数据的时间序列异常点检测研究[J].计算机技术与发展,2016,26(05):139.
 CHENG Yan-yun,ZHANG Shou-chao,YANG Yang. Research on Time Series Outlier Detection Based on Big Data[J].,2016,26(07):139.
[13]程艳云,张守超,杨杨. 基于大数据的时间序列预测研究与应用[J].计算机技术与发展,2016,26(06):175.
 CHENG Yan-yun,ZHANG Shou-chao,YANG Yang. Research and Application of Time Series Forecasting Based on Big Data[J].,2016,26(07):175.
[14]杨志勇,朱跃龙,万定生. 基于知识粒度的时间序列异常检测研究[J].计算机技术与发展,2016,26(07):51.
 YANG Zhi-yong,ZHU Yue-long,WAN Ding-sheng. Research on Time Series Anomaly Detection Based on Knowledge Granularity[J].,2016,26(07):51.
[15]杨祎玥[],伏潜[],万定生[]. 基于深度循环神经网络的时间序列预测模型[J].计算机技术与发展,2017,27(03):35.
 YANG Yi-yue[],FU Qian[],WAN Ding-sheng[]. A Prediction Model for Time Series Based on Deep Recurrent Neural Network[J].,2017,27(07):35.
[16]李春生,宋佳,张可佳,等. 基于关联度分析的生产异常模式挖掘[J].计算机技术与发展,2017,27(09):124.
 LI Chun-sheng,SONG Jia,ZHANG Ke-jia,et al. Abnormal Production Pattern Mining Based on Relevancy Analysis LI Chun-sheng,SONG Jia,ZHANG Ke-jia,ZHANG Yong[J].,2017,27(07):124.
[17]贾瑞玉,王瑞. 基于EMD的时间序列相似性度量算法[J].计算机技术与发展,2017,27(11):71.
 JIA Rui-yu,WANG Rui. A Similarity Measure Algorithm for Time Series Based on EMD[J].,2017,27(07):71.

更新日期/Last Update: 2015-09-06