[1]丁杰[],王继业[],程志华[]. 面向电力关系数据的云排序算法研究[J].计算机技术与发展,2015,25(07):5-10.
 DING Jie[],WANG Ji-ye[],CHENG Zhi-hua[]. Research on Cloud Ranking Algorithm for Power Relational Data[J].,2015,25(07):5-10.
点击复制

 面向电力关系数据的云排序算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年07期
页码:
5-10
栏目:
智能、算法、系统工程
出版日期:
2015-07-10

文章信息/Info

Title:
 Research on Cloud Ranking Algorithm for Power Relational Data
文章编号:
1673-629X(2015)07-0005-06
作者:
 丁杰[1] 王继业[2] 程志华[2]
 2.中国电力科学研究院 信息通信所;2.国家电网公司,
Author(s):
 DING Jie[1] WANG Ji-ye[2] CHENG Zhi-hua[2]
关键词:
 排序算法检索关系数据库云计算
Keywords:
 ranking algorithmkeyword searchrelational databasescloud computing
分类号:
TP393
文献标志码:
A
摘要:
 针对电力企业经营管理和生产运行控制领域的各类业务系统,在云计算技术的基础上,提出涵盖电力业务系统结构化数据的搜索服务体系。对跨业务系统、异构数据的信息检索中存在的可用性、准确性要求,着重分析了面向业务关系库的检索结果排序问题。对当前各种排序算法进行了分类和比较,特别对几种典型算法做了详细介绍和分析,讨论了各类算法的优缺点。对典型算法做了改进,并在生产管理系统仿真实验环节下进行了测试,结果表明了该排序算法的有效性。
Abstract:
 There are many kinds of business systems in the management and operation control field of electric power enterprise. A search system is proposed for the structured data over these business system based on the cloud computing technology. The usability and accuracy are very important to information retrieval over the cross business system and heterogeneous data. In this paper,make a detail survey of the ranking algorithms for keyword search over relationship database. A number of existing ranking algorithms are classified and com-pared. Several representational algorithms are summarized and analyzed in details. The principles,advantages and disadvantages of these algorithms are discussed. Finally,the classical algorithm is improved,and an intelligent ranking algorithm is proposed based on the cloud computing. Experiment results show that the algorithm is efficient on the PMS testing datasets.

相似文献/References:

[1]林欣,温传林,韩立新.一种元搜索主题偏好的排序算法[J].计算机技术与发展,2013,(02):41.
 LIN Xin,WEN Chuan-lin,HAN Li-xin.A Ranking Algorithm Based on Topic Preference for Meta-search[J].,2013,(07):41.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.

更新日期/Last Update: 2015-09-06