[1]杨文峰,郑洁莹,干宗良,等. 基于邻域嵌入的彩色图像超分辨率重建[J].计算机技术与发展,2015,25(06):25-25.
 YANG Wen-feng,ZHENG Jie-ying,GAN Zong-liang,et al. A Super-resolution Reconstruction Algorithm for Color Images Based on Neighbor Embedding[J].,2015,25(06):25-25.
点击复制

 基于邻域嵌入的彩色图像超分辨率重建()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年06期
页码:
25-25
栏目:
智能、算法、系统工程
出版日期:
2015-06-10

文章信息/Info

Title:
 A Super-resolution Reconstruction Algorithm for Color Images Based on Neighbor Embedding
文章编号:
1673-629X(2015)06-0025-04
作者:
 杨文峰郑洁莹干宗良崔子冠刘峰
 南京邮电大学 图像处理与图像通信江苏省重点实验室
Author(s):
 YANG Wen-fengZHENG Jie-yingGAN Zong-liang CUI Zi-guan LIU Feng
关键词:
 彩色图像超分重建邻域嵌入色度分量样本集分类
Keywords:
 color image super-resolution reconstructionneighborhood embeddingYUV color spaceclassification of sample-sets
分类号:
TP301
文献标志码:
A
摘要:
 单幅彩色图像进行超分辨率重建,一般先对亮度分量Y进行超分辨率重建,再对色度分量U和V进行简单插值,重建图像色彩模糊。针对此问题,文中提出一种同时对亮度与色度分量进行基于邻域嵌入的彩色图像超分辨率重建算法,该算法有效利用了色度分量的先验信息。为提高算法效率,使用K均值聚类的方法对样本集进行分类,并使用二叉树搜索方法确定样本类别。实验结果表明,文中提出的算法不仅提高了彩色图像的重建质量,并有效降低了算法的运行时间。
Abstract:
 For single-frame color image super-resolution reconstruction,most techniques use super-resolution reconstruction only on Y-channel. Directly use interpolation algorithms for the chrominance channels( U , V ) which decide the color. The color of the reconstruc-ting image is fuzzy. In order to solve this problem,propose a new super resolution method of color image based on the neighbor embed-ding. It uses the super resolution method to jointly estimate the luminance information and chrominance information,effectively using the chrominance components of a priori information. To enhance the efficiency of algorithm,use the K-Means clustering method to classify the sample set and apply the binary tree search method to determine the classification of sub-sample set. Experimental results show that the proposed method can effectively reduce the running time as well as improve reconstruction equality of low resolution color images.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(06):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(06):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(06):47.

更新日期/Last Update: 2015-07-27