[1]冒志敏,郑洪源,丁秋林. 一种基于案例推理的动态故障集诊断算法[J].计算机技术与发展,2015,25(05):110-114.
 MAO Zhi-min,ZHENG Hong-yuan,DING Qiu-lin. A Dynamic Fault Diagnosis Algorithm Based on CBR[J].,2015,25(05):110-114.
点击复制

 一种基于案例推理的动态故障集诊断算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年05期
页码:
110-114
栏目:
安全与防范
出版日期:
2015-05-10

文章信息/Info

Title:
 A Dynamic Fault Diagnosis Algorithm Based on CBR
文章编号:
1673-629X(2015)05-0110-05
作者:
 冒志敏郑洪源丁秋林
 南京航空航天大学 计算机科学与技术学院
Author(s):
 MAO Zhi-minZHENG Hong-yuanDING Qiu-lin
关键词:
 动态故障集二分贝叶斯网络故障诊断先验故障概率
Keywords:
 dynamic fault setbipartite Bayesian networkfault diagnosispriori fault probability
分类号:
TP277
文献标志码:
A
摘要:
 针对单纯静态集的故障诊断算法存在诊断准确率低、效率差等缺点,文中提出了一种基于案例推理的动态故障集诊断算法( CBR-DFDA)。 CBR-DFDA算法根据故障与症状依赖的不确定性,采用二分贝叶斯网络建立依赖模型,在故障持续时间统计的基础上修正先验故障概率;并引入动态故障集,给出了故障案例的表示、案例属性约简、案例属性权重的分配及相似算法。实验结果表明,CBR-DFDA算法可以有效地针对动态故障集中的故障,改善内存的存储空间,提高诊断效率和准确率。
Abstract:
 For the shortcomings existing in the fault diagnosis algorithm of simple dynamic set,such as low efficiency and poor accuracy, propose a new algorithm to handle the fault diagnosis problem in the condition of dynamic fault set,called Dynamic Fault Diagnosis Algo-rithm based on Case-Based Reasoning ( CBR-DFDA for short) . Considering the uncertainty of dependency between failure and symp-toms,CBR-DFDA algorithm builds dependency model using bipartite Bayesian network,and corrects priori probability of failure on the basis of analyzing fault duration. Also,introduce a set of dynamic fault and give the way to express the failure,simplify the attributes and assign attribute weights in a specific case. Then the optimal solution will be gained through running the algorithm. Experimental results show that CBR-DFDA algorithm can improve utilization of the memory and obtain a higher diagnostic efficiency and accuracy for the failure in a dynamic fault set.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(05):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(05):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(05):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(05):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(05):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(05):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(05):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(05):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(05):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(05):47.

更新日期/Last Update: 2015-07-09