[1]张方舟,高晓松. 基于条件函数依赖的挖掘算法研究[J].计算机技术与发展,2015,25(05):56-59.
 ZHANG Fang-zhou,GAO Xiao-song. Research on Mining Algorithm Based on Conditional Functional Dependence[J].,2015,25(05):56-59.
点击复制

 基于条件函数依赖的挖掘算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年05期
页码:
56-59
栏目:
智能、算法、系统工程
出版日期:
2015-05-10

文章信息/Info

Title:
 Research on Mining Algorithm Based on Conditional Functional Dependence
文章编号:
1673-629X(2015)05-0056-04
作者:
 张方舟高晓松
 东北石油大学 计算机与信息技术学院
Author(s):
 ZHANG Fang-zhouGAO Xiao-song
关键词:
 条件函数依赖数据质量数据清洗CTANE算法
Keywords:
 conditional functional dependencydata qualitydata cleaningCTANE algorithm
分类号:
TP301.6
文献标志码:
A
摘要:
 由于采用函数依赖( Functional Dependency,FD)对数据库的检测和修复还不够充分,现提出了条件函数依赖( Con-ditional Functional Dependency,CFD),其是在FD的基础上加入了语义约束。条件函数依赖的挖掘是一种重要的数据库分析技术,CFD挖掘是在FD挖掘的基础上通过条件分析进行更细粒度的信息挖掘,其时间复杂度较高。文中主要介绍了CFD的相关概念及CFD经典挖掘算法之一—CTANE,并对该算法效率进行改进。改进后的算法不仅可以提高数据挖掘过程中操作的效率,同时也将节省数据的存储空间。
Abstract:
 Because the detection and repair of the database is not sufficient by Functional Dependency ( FD) ,Conditional Functional De-pendency ( CFD) is proposed,which is an extension of FD adding semantic constraints. The discovery of CFD is an important database a-nalysis technique,CFD mining do the more fine-grained information mines which based on FD mining,so the time complexity of CFD mining is higher than the latter. Introduce the related concept of CFD and one of the CFD classical mining algorithm—CTANE in this pa-per,and improve the efficiency of this algorithm. The improved algorithm can not only enhance the operating efficiency of the data min-ing process,but also save the data storage space.

相似文献/References:

[1]仲志平 仲晓辉.分布式数据库中冲突检测技术研究[J].计算机技术与发展,2012,(01):217.
 ZHONG Zhi-ping,ZHONG Xiao-hui.Research on Technique for Detecting Conflicts in Distributed Database[J].,2012,(05):217.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(05):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(05):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(05):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(05):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(05):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(05):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(05):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(05):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(05):43.

更新日期/Last Update: 2015-06-23