[1]侯翔,廖小平. 基于PSO算法的洪水预报模型研究[J].计算机技术与发展,2015,25(04):200-203.
 HOU Xiang,LIAO Xiao-ping. Research on Flood Forecasting Model Based on PSO[J].,2015,25(04):200-203.
点击复制

 基于PSO算法的洪水预报模型研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年04期
页码:
200-203
栏目:
应用开发研究
出版日期:
2015-04-10

文章信息/Info

Title:
 Research on Flood Forecasting Model Based on PSO
文章编号:
1673-629X(2015)04-0200-04
作者:
 侯翔廖小平
 四川文理学院 计算机学院
Author(s):
 HOU Xiang LIAO Xiao-ping
关键词:
 BP神经网络粒子群算法洪水流量洪水预报
Keywords:
 BP neural networkparticle swarm optimizationflood flowflood forecasting
分类号:
TP301.6
文献标志码:
A
摘要:
 受四川盆地地形与北部秦岭山脉的影响,达州市河流众多,洪灾频频发生,每次洪灾都给达州市政府和人民带来巨大的经济损失和惨重的人员伤亡。文中以四川省达州市州河流域为研究对象,采用达县水文站月平均流量作为洪水属性,提出了一种基于PSO算法优化的神经网络,并建立了洪水预报模型。通过实验仿真对比,其预报精度高于传统的BP神经网络,具有预报结果合理、相对误差小、收敛速度快、预报精度高等优点,从而能更有效地帮助防汛部门预报洪水,降低洪水带来的风险,还能够为达州市的防汛工作提供一定的参考意见。
Abstract:
 Influenced by the Sichuan basin and the north Qinling mountains, there are many rivers that flooding frequently occurs in Dazhou. Every time,floods bring huge economic loss and heavy casualties to the government and people. Taking Zhou River in Dazhou City,Sichuan Province,as the study objects,use the monthly average flow as flood properties collected by Daxian hydrological stations, a neural network based on PSO algorithm is proposed,and a flood forecasting model is established. By the simulation experiments,the forecast accuracy is higher than traditional BP neural network,the prediction result is reasonable with small relative error,fast convergence rate and high prediction accuracy. It will help flood control departments to predict flood flow effectively and reduce the risks of flooding, and also can provide some reference opinions to flood control work in Dazhou.

相似文献/References:

[1]王菲露 宋杰 宋杨.BP神经网络在蛋白质二级结构预测中的应用[J].计算机技术与发展,2009,(05):217.
 WANG Fei-lu,SONG Jie,SONG Yang.Application of BP Neural Network in Protein Secondary Structure Prediction[J].,2009,(04):217.
[2]李秉 王凤山 李晓军.一种弹炮结合武器系统作战效能评估方法[J].计算机技术与发展,2009,(06):217.
 LI Bing,WANG Feng-shan,LI Xiao-jun.An Evaluation Method of Operational Effectiveness of Anti - Aircraft Gun Missile Weapon System[J].,2009,(04):217.
[3]贾其燕 王友仁 崔江.一种基于遗传算法的动态电流测试生成方法[J].计算机技术与发展,2009,(06):225.
 JIA Qi-yan,WANG You-ren,CUI Jiang.A Dynamic Current Test Generation Method Based on Genetic Algorithm[J].,2009,(04):225.
[4]王宁.一种基于BP神经网络的即时在线推荐系统[J].计算机技术与发展,2009,(07):230.
 WANG Ning.An Online Recommendation System Based on BP Network[J].,2009,(04):230.
[5]钟以维 徐应涛 张莹.用填充函数法改进的人脸比对算法[J].计算机技术与发展,2009,(08):78.
 ZHONG Yi-wei,XU Ying-tao,ZHANG Ying.Face Comparison Algorithm Based on Filled Function Method[J].,2009,(04):78.
[6]夏玫 陈立潮 王新波.一种提高BP神经网络泛化能力的改进算法[J].计算机技术与发展,2009,(09):62.
 XIA Mei,CHEN Li-chao,WANG Xin-bo.A Modified Algorithm to Improve Generalization Ability of BP Neural Network[J].,2009,(04):62.
[7]洪素惠 吴发成 米红.神经网络自适应PID在吹瓶机中的应用[J].计算机技术与发展,2009,(09):177.
 HONG Su-hui,WU Fa-cheng,MI Hong.Adaptive PID Controller Based on Neural Networks in Stretch Blow Molding[J].,2009,(04):177.
[8]陈虹 梁文彬 李宗宝 董航飞.基于机器人的神经网络预测控制算法[J].计算机技术与发展,2008,(08):65.
 CFIEN Hong,LIANG Wen-bin,LI Zong-bao,et al.A Neural Network Predictive Control Algorithm Based on Robot[J].,2008,(04):65.
[9]张龙 吴江 张德同.基于粗糙集和BP神经网络的天然裂缝识别[J].计算机技术与发展,2008,(11):41.
 ZHANG Long,WU Jiang,ZHANG De-tong.A Method for Natural Fractures Identification Based on Rough Sets Theory and BP Neural Network[J].,2008,(04):41.
[10]胡人君 李坤 吴小培.基于脑电信号的思维任务分类[J].计算机技术与发展,2007,(05):173.
 HU Ren-jun,LI Kun,WU Xiao-pei.Classification for Different Mental Tasks Based on EEG Signals[J].,2007,(04):173.
[11]段艳明. 基于PSO算法和BP神经网络的PID控制研究[J].计算机技术与发展,2014,24(08):238.
 DUAN Yan-ming. Research of PID Control Based on BP Neural Network and PSO Algorithm[J].,2014,24(04):238.
[12]朱俚治. 一种基于BP神经网络的智能检测病毒方法[J].计算机技术与发展,2014,24(10):163.
 ZHU Li-zhi. An Intelligent Virus Detection Method Based on BP Neural Network[J].,2014,24(04):163.
[13]孙吉红[][],张丽莲[] [],武尔维[][],等. 基于智能算法的价格预测模型探究[J].计算机技术与发展,2014,24(11):107.
 SUN Ji-hong[][],ZHANG Li-lian[][],WU Er-wei[][],et al. Research on Price Prediction Model Based on Intelligent Algorithm[J].,2014,24(04):107.
[14]关成立[][],杨岳[],陈兴汉[][]. 基于BP神经网络的线路板废水处理研究[J].计算机技术与发展,2015,25(08):194.
 GUAN Cheng-li[] [],YANG Yue[] CHEN Xing-han[][]. Research on Wastewater Treatment Process of Printed Circuit Board Based on Neural Network[J].,2015,25(04):194.
[15]潘春花,孙燕,朱存. 太阳黑子活动周期特征的神经网络和小波分析[J].计算机技术与发展,2016,26(03):158.
 PAN Chun-hua,SUN Yan,ZHU Cun. BP Neural Network and Wavelet Analysis of Period of Sunspot Activity[J].,2016,26(04):158.
[16]郭建峰[][],李玉[],安东[]. 基于LM遗传神经网络的短期股价预测[J].计算机技术与发展,2017,27(01):152.
 GUO Jian-feng[][],LI Yu[],AN Dong[]. Prediction for Short-term Stock Price Based on LM-GA-BP Neural Network[J].,2017,27(04):152.
[17]王栋. 基于BP神经网络的公路客运量预测方法[J].计算机技术与发展,2017,27(02):187.
 WANG Dong. Prediction Method of Highway Passenger Transportation Volume Based on BP Neural Network[J].,2017,27(04):187.
[18]邓文杰. 基于聚粒子群算法的神经网络权值优化方法[J].计算机技术与发展,2017,27(10):16.
 DENG Wen-jie. A Neural Network Weights Optimization Method Based on Clustering Particle Swarm Optimization[J].,2017,27(04):16.

更新日期/Last Update: 2015-06-05