[1]陈孝全[][],刘波[]. 基于支持向量机粒化的证券指数预测[J].计算机技术与发展,2015,25(04):148-152.
 CHEN Xiao-quan[] [],LIU Bo[]. Stock Index Prediction Based on Support Vector Machines and Information Granulation[J].,2015,25(04):148-152.
点击复制

 基于支持向量机粒化的证券指数预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年04期
页码:
148-152
栏目:
应用开发研究
出版日期:
2015-04-10

文章信息/Info

Title:
 Stock Index Prediction Based on Support Vector Machines and Information Granulation
文章编号:
1673-629X(2015)04-0148-05
作者:
 陈孝全[1][2] 刘波[1]
 1.华南师范大学 计算机学院;2. 深圳博物馆网络中心
Author(s):
 CHEN Xiao-quan[1] [2]LIU Bo[1]
关键词:
 股票指数近似支持向量机模糊信息粒化交叉验证回归分析
Keywords:
 stock indexProximal Support Vector Machine ( PSVM) fuzzy information granulationcross validation regression analysis
分类号:
TP301
文献标志码:
A
摘要:
 为分析股票价格指数变化,文中提出一种采用近似支持向量机( PSVM)将金融时间序列数据进行模糊信息粒化的方法,并用此方法对上证指数数据进行回归分析预测。其实现过程是以2008年到2013年的上证综指数据建立抛物型模糊粒子,运用近似支持向量机原理,采用交叉验证的方法对相关参数进行寻优,用优化参数对时间序列进行训练,并回归预测模糊粒子的三个参数来确定上证综指的走势变化。对于非线性难预测的股票指数,实验分析比较了实际数据与预测数据,证明具有较好的预测效果。
Abstract:
 To analyze the changes of the stock index,put forward a financial data time series prediction method based on proximal support vector machine and fuzzy information granulation,and this method is used for the Shanghai composite index data regression analysis and forecast. The parabolic fuzzy particle model is established about the Shanghai composite index data set between 2008 and 2013. Use the theory of proximal support vector machine combined cross validation method to optimize the parameters,train the time series data with the optimized parameters,and three parameter of fuzzy particles regression prediction determine the variation trend of the Shanghai composite index. The stock index is nonlinear and hard to predict,the experiment analyzes and compares both the actual data and the predicted data, which proves that it has good prediction effect.

相似文献/References:

[1]胡蓉.多输出支持向量回归及其在股指预测中的应用[J].计算机技术与发展,2007,(10):226.
 HE Rong.Application of Multi - Output Support Vector Regression in Stock Market Index Forecasting[J].,2007,(04):226.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(04):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(04):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(04):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(04):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(04):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(04):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(04):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(04):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(04):43.

更新日期/Last Update: 2015-06-05