[1]王园萍,殷洪友. 基于矩阵分数范数的人脸识别方法[J].计算机技术与发展,2015,25(04):22-25.
 WANG Yuan-ping,YIN Hong-you. Face Recognition Method Based on Fractional Matrix Norm[J].,2015,25(04):22-25.
点击复制

 基于矩阵分数范数的人脸识别方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年04期
页码:
22-25
栏目:
智能、算法、系统工程
出版日期:
2015-04-10

文章信息/Info

Title:
 Face Recognition Method Based on Fractional Matrix Norm
文章编号:
1673-629X(2015)04-0022-04
作者:
 王园萍殷洪友
 南京航空航天大学 理学院
Author(s):
 WANG Yuan-pingYIN Hong-you
关键词:
 特征选择矩阵范数稀疏性人脸识别
Keywords:
 feature selectionfractional matrix normsparsityface recognition
分类号:
TP301
文献标志码:
A
摘要:
 近年来,混合的分数矩阵范数l2,p(0< p≤1)在高维数据处理的特征选取中有很好的表现,其基本思想是利用了欧氏范数l2的光滑性和分数范数lp(0< p≤1)的稀疏性。大量实验数据表明,混合分数矩阵范数l2,p(0< p <1)不仅比传统的向量范数l1具有更好的联合稀疏性,对噪声的抗干扰性也更强。文中依据人脸数据的稀疏结构,建立基于混合矩阵范数l2,p(0< p≤1)极小化的特征选取模型,结合最近邻识别方法,提出了一类新的鲁棒人脸分类方法。在多个人脸数据集上的实验结果表明,基于分数矩阵范数的新模型比传统的人脸识别方法有更好的特征选择及分类效果。
Abstract:
 Recently,mixed fractional matrix norm l2,p(0 < p≤1) has exhibited good performance for feature selection in high-dimen-sional data processing. The natural idea is combining the smoothness of Euclid norm l2 and the sparsity of norm lp(0 < p≤1) . A variety of experimental results have showed that the fractional matrix norm l2,p(0 < p < 1) has better joint sparsity and stronger reliability than traditional vector norm l1 . In this paper,a l2,p(0 < p≤1) -based minimization is presented to select feature in face data. Combined with the nearest neighbor classification method,a robust face recognition method is proposed. The extensive experiments on face data sets have showed that the l2,p(0 < p < 1) -minimization model performs better than the state-of-the-art on feature selection and classification effect.

相似文献/References:

[1]刘利 何先平 袁文亮.股票趋势预测中Wrapper方法的研究与应用[J].计算机技术与发展,2010,(01):209.
 LIU Li,HE Xian-ping,YUAN Wen-liang.Research and Application of Wrapper Approach to Stock Trend Prediction[J].,2010,(04):209.
[2]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(04):21.
[3]张家柏 王小玲.基于聚类和二进制PSO的特征选择[J].计算机技术与发展,2010,(06):25.
 ZHANG Jia-bai,WANG Xiao-ling.A Novel Algorithm Based on K-Means Clustering and Binary Particle Swarm Optimization[J].,2010,(04):25.
[4]冯甲策 叶明 王惠文.基于Gram—Schmidt过程的支持向量机降维方法[J].计算机技术与发展,2009,(11):7.
 FENG Jia-ce,YE Ming,WANG Hui-wen.Dimension Reduction Method of Support Vector Machine Based on Gram- Schmidt Process[J].,2009,(04):7.
[5]林伟 柳荣其 徐熙.邮件过滤中一种改进的特征选择方法研究[J].计算机技术与发展,2009,(01):84.
 LIN Wei,LIU Rong-qi,XU Xi.Improvement of Feature Selection Algorithm in Spam Filtering[J].,2009,(04):84.
[6]刘毅 张月琳.基于Agent的邮件过滤与个性化分类系统设计[J].计算机技术与发展,2009,(02):66.
 LIU Yi,ZHANG Yue-lin.Design of a Mail Filter and Personalized Classification System Based on Agent[J].,2009,(04):66.
[7]陈素萍 谢丽聪.一种文本特征选择方法的研究[J].计算机技术与发展,2009,(02):112.
 CHEN Su-ping,XIE Li-cong.Research on Document Feature Selection[J].,2009,(04):112.
[8]段震 王倩倩 张燕平 张铃.覆盖算法下文本分类特征选择的研究[J].计算机技术与发展,2008,(11):29.
 DUAN Zhen,WANG Qian-qian,ZHANG Yan-ping,et al.Study on Feature Selection of Text Classification in Cross Cover Algorithm[J].,2008,(04):29.
[9]王希雷.基于Rough集理论的车牌汉字特征提取[J].计算机技术与发展,2007,(06):26.
 WANG Xi-lei.Car Plate Chinese Character Feature Extraction Based on Rough Set Theory[J].,2007,(04):26.
[10]董梅 胡学钢.基于多特征选择的中文文本分类[J].计算机技术与发展,2007,(07):117.
 DONG Mei,HU Xue-gang.Text Categorization Based on Multiple Features Selection[J].,2007,(04):117.
[11]姚明海[],王娜[],李劲松[]. 一种新的基于特征选择的虹膜识别方法[J].计算机技术与发展,2014,24(12):96.
 YAO Ming-hai[],WANG Na[],LI Jin-song[]. A Novel Iris Recognition Method Based on Feature Selection[J].,2014,24(04):96.
[12]梁天超[][],荆晓远[],姚永芳[],等. 基于加权RFE-Bayes方法的软件缺陷预测模型[J].计算机技术与发展,2015,25(10):131.
 LIANG Tian-chao[][],JING Xiao-yuan[],YAO Yong-fang[],et al. A Prediction Model for Software Defect Based on Weighted RFE-Bayes[J].,2015,25(04):131.
[13]李春生,邸京华,李少龙,等. 时序化生产预警有效影响因子的获取方法研究[J].计算机技术与发展,2016,26(07):122.
 LI Chun-sheng,DI Jing-hua,LI Shao-long,et al. Research on Acquisition Method of Effective Impact Factors in Production Early Warning by Time Series[J].,2016,26(04):122.
[14]周丰,王未央. 基于最小最大模块化集成特征选择的改进[J].计算机技术与发展,2016,26(09):149.
 ZHOU Feng,WANG Wei-yang. Improvement of Multi-classification Integrated Selection Based on Min-Max-Module[J].,2016,26(04):149.
[15]张淑雯,刘效武,孙雪岩. 基于多源融合的网络安全态势层次感知[J].计算机技术与发展,2016,26(10):77.
 ZHANG Shu-wen,LIU Xiao-wu,SUN Xue-yan. Hierarchical Awareness of Network Security Situation Based on Multi-source Fusion [J].,2016,26(04):77.
[16]李策,王保云,高浩. 基于自适应粒子群算法的特征选择[J].计算机技术与发展,2017,27(04):89.
 LI Ce,WANG Bao-yun,GAO Hao. Feature Selection Based on Adaptive Particle Swarm Optimization[J].,2017,27(04):89.

更新日期/Last Update: 2015-06-02