[1]简江涛,荀鹏,蔡开裕. 基于域间依赖模型的多域故障诊断算法[J].计算机技术与发展,2015,25(04):13-17.
 JIAN Jiang-tao,XUN Peng,CAI Kai-yu. Multi-domain Fault Diagnosis Algorithm Based on Inter-domain Dependency Model[J].,2015,25(04):13-17.
点击复制

 基于域间依赖模型的多域故障诊断算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年04期
页码:
13-17
栏目:
智能、算法、系统工程
出版日期:
2015-04-10

文章信息/Info

Title:
 Multi-domain Fault Diagnosis Algorithm Based on Inter-domain Dependency Model
文章编号:
1673-629X(2015)04-0013-05
作者:
 简江涛荀鹏蔡开裕
 国防科学技术大学 计算机学院
Author(s):
 JIAN Jiang-tao XUN PengCAI Kai-yu
关键词:
 依赖关系域间依赖模型故障诊断概率评估症状簇
Keywords:
 dependence relationshipinter-domain dependency modelfault diagnosisprobabilistic evaluation cluster of symptoms
分类号:
TP301.6
文献标志码:
A
摘要:
 在多域环境下,组合服务所调用的子服务跨越多个管理域,对域间故障传播产生的跨域症状进行诊断时需要管理域之间相互协作。针对这一问题,文中提出了域间依赖模型,阐明了症状与管理域的依赖关系,并基于该模型提出多域故障诊断算法,并从时间性能方面对算法进行了改进。文中首先通过症状簇划分算法对症状集合进行划分,对同一症状簇协同诊断;然后通过对跨域症状与关联域依赖关系的概率评估,选择最可能的关联域集合进行诊断;最后,仿真结果表明该算法可以较为准确地诊断多域环境下的服务故障。
Abstract:
 In multi-domain environment,the composite service is composed of multiple sub-services crossing different administrative do-mains,and symptoms caused by inter-domain fault propagation need administrative domain work with each other to diagnose. In response to this problem,propose a multi-domain dependency model which describes the dependence relationship between symptom and associated domain. Based on the dependency model,a multi-domain fault diagnosis algorithm is proposed,and the algorithm is improved in time performance. First,divide the set of symptoms into clusters of symptoms by clustering algorithm,and a cluster of symptoms will be diag-nosed together. Then choose the set of most probable domains to diagnose by evaluating the probability of dependence relationship be-tween symptom and associated domain. Lastly the simulation results show that the algorithm can accurately diagnose service fault in multi-domain environment.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(04):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(04):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(04):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(04):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(04):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(04):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(04):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(04):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(04):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(04):47.

更新日期/Last Update: 2015-06-02