[1]许少华,张亚光,李学贵.一种基于逆向云变换的混合推理神经网络[J].计算机技术与发展,2015,25(03):118-121.
 XU Shao-hua,ZHANG Ya-guang,LI Xue-gui.A Reasoning Neural Network Based on Reverse Cloud Transformation[J].,2015,25(03):118-121.
点击复制

一种基于逆向云变换的混合推理神经网络()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年03期
页码:
118-121
栏目:
智能、算法、系统工程
出版日期:
2015-03-10

文章信息/Info

Title:
A Reasoning Neural Network Based on Reverse Cloud Transformation
文章编号:
1673-629X(2015)03-0118-04
作者:
 许少华张亚光李学贵
 东北石油大学 计算机与信息技术学院
Author(s):
 XU Shao-huaZHANG Ya-guangLI Xue-gui
关键词:
 信息融合云模型人工神经网络推理学习算法
Keywords:
 information fusioncloud modelartificial neural networkreasoninglearning algorithm
分类号:
TP183
文献标志码:
A
摘要:
 针对数值信息与定性领域知识相互融合的推理问题,提出了一种基于云变换的混合推理神经网络。利用逆向正态云发生器可实现论域中定量数值到定性概念描述间不确定关系的转换,建立基于云变换的混合信息推理逻辑和神经网络模型。将数值信息通过云变换在概率意义下转化为定性概念谓词,把推理规则表示为神经元,利用神经网络的学习性质来实现定量与定性混合信息的自适应计算推理。以油田开发水淹层判别为例,实验结果验证了模型和算法的有效性。
Abstract:
 Aiming at the reasoning problems of the mutual integration between the numerical information and qualitative domain knowl-edge,a Reasoning Neural Network ( RNN) based on cloud transformation was proposed. Using the reverse normal cloud generator can a-chieve the conversion of the uncertain relationship between the quantitative values and qualitative concept description,and build the mixed information reasoning logic and RNN model based on cloud transformation. Then transform the numerical information into qualitative concept in the sense of probability through the cloud transformation,and express the inference rules as neurons,and use the learning nature of the neural networks to achieve adaptive processing of mixed quantitative and qualitative information. Taking pumping unit balance di-agnostic for example,the experimental results verify the validity of the model and algorithm.

相似文献/References:

[1]韩景灵 孙敏.入侵检测报警信息融合系统的构建与实现[J].计算机技术与发展,2007,(06):159.
 HAN Jing-ling,SUN Min.Design and Implementation of Intrusion Detection Alert Fusion System[J].,2007,(03):159.
[2]王毅 雷英杰.基于Vague集的多传感器信息融合方法[J].计算机技术与发展,2007,(04):232.
 WANG Yi,LEI Ying-jie.Method for Multisensor Information Fusion Based on Vague Sets[J].,2007,(03):232.
[3]方宏彬 张铃.领域信息在信息融合进程中的优化处理[J].计算机技术与发展,2006,(05):31.
 FANG Hong-bin,ZHANG Ling.Optimization of Region Information in Process of Information Fusion[J].,2006,(03):31.
[4]陶秀凤 周鸣争.基于支持向量机的多传感器信息融合算法[J].计算机技术与发展,2006,(06):177.
 TAO Xiu-feng,ZHOU Ming-zheng.An Algorithm of Multiple Sensor Information Fusion Based on SVM[J].,2006,(03):177.
[5]谢振国 凌捷.网络安全预警系统的研究[J].计算机技术与发展,2011,(11):250.
 XIE Zhen-guo,LING Jie.Study of a Network Security and Early-Warning System[J].,2011,(03):250.
[6]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(03):1.
[7]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(03):5.
[8]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(03):13.
[9]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(03):21.
[10]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(03):25.
[11]吕丁浩,钟伯成,雒静. 信息融合及其在建筑节能中的应用[J].计算机技术与发展,2015,25(04):134.
 Lü Ding-hao,ZHONG Bo-cheng,LUO Jing. Information Fusion and Its Application in Building Energy[J].,2015,25(03):134.
[12]王巍,燕雪峰. 基于面向对象贝叶斯网络的威胁评估模型[J].计算机技术与发展,2016,26(05):7.
 WANG Wei,YAN Xue-feng. Threat Source Comprehensive Evaluation Model Based on Object-oriented Bayesian Networks[J].,2016,26(03):7.

更新日期/Last Update: 2015-05-04