[1]许肖,顾磊. 复杂背景下文本检测研究[J].计算机技术与发展,2015,25(03):40-44.
 XU Xiao,GU Lei. Research on Text Detection under Complex Background[J].,2015,25(03):40-44.
点击复制

 复杂背景下文本检测研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年03期
页码:
40-44
栏目:
智能、算法、系统工程
出版日期:
2015-03-10

文章信息/Info

Title:
 Research on Text Detection under Complex Background
文章编号:
1673-629X(2015)03-0040-05
作者:
 许肖顾磊
 南京邮电大学
Author(s):
 XU XiaoGU Lei
关键词:
 文本检测机器学习特征提取评价方法
Keywords:
 text detectionmachine learningfeature extractionevaluation method
分类号:
TP311
文献标志码:
A
摘要:
 在复杂背景下,图像中的文本对于整个图像的语义理解、图像检索、图像识别等应用具有非常重要的作用,有广阔的发展空间,而要获取图像中的文本就需要利用文本检测方法。在搜集整理当前文本检测研究成果的基础上,对文本检测基本方法进行了分类和探讨。分别从基于特征提取、基于机器学习以及基于这两者相结合方法这三个方面对文本检测方法进行详细的阐述;接下来介绍了两种较通用的文本检测结果的评价方法。此外还通过实例分析了各种检测方法的优点和不足,在此基础上,为文本检测的进一步发展提供了建议。
Abstract:
 Under complex background,the text in the image plays a very important role for semantic understanding of image,image re-trieval and image recognition and other application,with broad development space,and to get the text in the image need to use text detec-tion method. In this paper,based on collecting and arranging the current text detection results,the basic methods of text detection are clas-sified and discussed. Illustrate the text detection method in three aspect including feature extraction based,machine learning based,and combination of both in detail. Then introduce two common evaluation method of text detection results. Moreover,a brief analysis is made to introduce the advantages and disadvantages of these three kinds of methods. On the basis of this,put forward some suggestion to the de-velopment direction of the future for the text detection.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(03):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(03):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(03):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(03):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(03):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(03):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(03):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(03):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(03):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(03):47.

更新日期/Last Update: 2015-04-30