[1]郭新. 一种改进的短期交通流量预测算法研究[J].计算机技术与发展,2015,25(02):103-017.
 GUO Xin. Research on an Improved Prediction Algorithm for Short-term Traffic Flow [J].,2015,25(02):103-017.
点击复制

 一种改进的短期交通流量预测算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年02期
页码:
103-017
栏目:
智能、算法、系统工程
出版日期:
2015-02-10

文章信息/Info

Title:
 Research on an Improved Prediction Algorithm for Short-term Traffic Flow

文章编号:
1673-629X(2015)02-0103-05
作者:
 郭新
 广东交通职业技术学院 交通信息学院
Author(s):
 GUO Xin
关键词:
 智能交通系统交通流在线学习支持向量回归模型
Keywords:
 intelligent transportation systemstraffic flowonline learningsupport-vector regression model
分类号:
TP391
文献标志码:
A
摘要:
 短期交通流量预测已经成为智能交通系统的重要研究领域。为了进行流量动态分配,积极有效地运行交通管理系统,必须要准确估计交通流量。在预测短期流量时,近期流量信息显然对将来短期流量预测具有重要的预示作用,即应该考虑取决于交通流量数据时差的相对重要性。文中提出一种新的短期流量预测模型:基于在线学习的加权支持向量回归模型( OLWSVR)。 OLWSVR模型与多种知名预测模型(包括人工神经网络模型、局部加权回归模型、传统的支持向量回归模型,及在线学习支持向量模型)进行比较。结果表明,文中模型的性能优于其他当前模型的性能。
Abstract:
 Prediction of short-term traffic flow has become one of the major research fields in intelligent transportation systems. Accurate-ly estimating traffic flow are important for operating effectively and proactively traffic management systems in the context of dynamic traf-fic assignment. For predicting short-term traffic flows,recent traffic information is clearly a more significant indicator of the near-future traffic flow. In other words,the relative significance depending on the time difference between traffic flow data should be considered. It presents a novel prediction model for short-term traffic flow in this paper,called Online Learning Weighted Support-Vector Regression ( OLWSVR) . The OLWSVR model is compared with several well-known prediction models,including artificial neural network models, locally weighted regression,conventional support-vector regression,and online learning support-vector regression. The results show that the performance of the proposed model is superior to that of existing models.

相似文献/References:

[1]方良松 余春艳.基于数字荷尔蒙模型的信号灯配时优化的研究[J].计算机技术与发展,2009,(01):143.
 FANG Liang-song,YU Chun-yan.Digital Hormones Model- Based Optimal Time Assignment of Traffic Signal Cycle[J].,2009,(02):143.
[2]雷云 王夏黎 孙华.基于视频的交通目标跟踪方法研究[J].计算机技术与发展,2010,(07):44.
 LEI Yun,WANG Xia-li,SUN Hua.The Research about Transport Target Tracking Based on Video[J].,2010,(02):44.
[3]芦东昕 李典蔚 任静 柳长安.基于组件式GIS的移动奥运智能交通系统[J].计算机技术与发展,2007,(05):59.
 LU Dong-xin,LI Dian-wei,REN Jing,et al.Research of Intelligent Transport System for Olympic Games Based on Component GIS[J].,2007,(02):59.
[4]芦东昕 李典蔚 柳长安.基于AJAX和Servlet的Web GIS的研究与实现[J].计算机技术与发展,2007,(03):193.
 LU Dong-xin,LI Dian-wei,LIU Chang-an.Research & Implementation of Web GIS Based on AJAX and Servlet[J].,2007,(02):193.
[5]李海文 任静 张李秋.交通监控系统中信息发布平台的设计与实现[J].计算机技术与发展,2007,(04):52.
 LI Hai-wen,PEN Jing,ZHANG Li-qiu.Design and Implementation of Information Distributing Platform of Intelligent Transportation Monitoring Management System[J].,2007,(02):52.
[6]徐武 杨印根 周卫东 吴克捷.智能交通系统模型的算法分析与改进[J].计算机技术与发展,2006,(12):162.
 XU Wu,YANG Yin-gen,ZHOU Wei-dong,et al.Analysis and Improvement of Algorithms for ITS Model[J].,2006,(02):162.
[7]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(02):1.
[8]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(02):5.
[9]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(02):13.
[10]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(02):21.
[11]李金洋[][],陈仪香[][][],王振辉[][]. 基于车速的自适应交通信号灯控制系统[J].计算机技术与发展,2016,26(09):21.
 LI Jin-yang[][],CHEN Yi-xiang[][][],WANG Zhen-hui[[][]. A Self-adaptive Traffic Light Control System Based on Speed of Vehicles[J].,2016,26(02):21.

更新日期/Last Update: 2015-04-28