[1]肖维民,葛艺晓. 基于Freeman链码特征值的示功图分类识别研究[J].计算机技术与发展,2015,25(02):25-28.
 XIAO Wei-min,GE Yi-xiao. Research on Classification and Identification of Indicator Diagram Based on Freeman Chain-code Eigenvalues[J].,2015,25(02):25-28.
点击复制

 基于Freeman链码特征值的示功图分类识别研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年02期
页码:
25-28
栏目:
智能、算法、系统工程
出版日期:
2015-02-10

文章信息/Info

Title:
 Research on Classification and Identification of Indicator Diagram Based on Freeman Chain-code Eigenvalues
文章编号:
1673-629X(2015)02-0025-04
作者:
 肖维民葛艺晓
 安徽工业大学 计算机系
Author(s):
 XIAO Wei-minGE Yi-xiao
关键词:
 Freeman链码示功图神经网络故障诊断MATLAB仿真
Keywords:
 Freeman chain-code indicator diagramneural networkfault diagnosisMATLAB simulation
分类号:
TP389.1
文献标志码:
A
摘要:
 示功图分析是目前比较常用的油井故障诊断方法,基于神经网络的示功图分类识别要求准确地提取示功图的特征值,特征值的质量直接关系到示功图识别的效率和可靠性。传统的示功图特征值提取方法计算量很大,与油井现场的实时性要求相悖。为了解决这一问题,提出了用Freeman链码来表达示功图特征,对示功图的识别进行研究。分析了示功图Freeman链码的提取方法以及典型工况链码特征,建立示功图链码特征样本库,给出了示功图识别的方法步骤,在MAT-LAB下进行仿真验证。结果表明,Freeman链码特征值能够有效地分类出各种典型工况示功图,神经网络具有更快的收敛速度和更高的识别效率。
Abstract:
 The analysis of indicator diagram is a commonly-used method for diagnosing oil well faults. The classification and identifica-tion of indicator diagram based on neural network requires the accurately extracted eigenvalues,the quality of which is directly related to the recognition rate and recognition reliability of the indicator diagram. However,the traditional method for extracting eigenvalues needs a great amount of calculation,so it runs counter to the real-time requirements of the well sites. To solve this problem,attempt to illustrate features of indicator diagram by the Freeman chain-code and then research its identification. Firstly,analyze the extracted methods of in-dicator diagram Freeman chain-code and the typical features of working condition chain code. Then,try to establish a sample library for the indicator diagram chain code features. Finally,provide a practicable method and procedure for the identification of indicator diagram and meanwhile carry out the simulation validation under MATLAB. The results reveal that the Freeman chain-code eigenvalues can sort out all kinds of typical working condition indicator diagrams. Therefore,the neural network will have faster convergence speed and higher recognition efficiency.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(02):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(02):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(02):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(02):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(02):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(02):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(02):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(02):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(02):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(02):47.

更新日期/Last Update: 2015-04-28