[1]尚会超[],李飞飞[],张洪斌[],等. 服装布料自动铺展过程中的疵点检测与定位[J].计算机技术与发展,2015,25(01):212-215.
 SHANG Hui-chao[],LI Fei-fei[],ZHANG Hong-bin[],et al. Defect Detection and Location in Process of Clothing Fabric Automatic Spreading[J].,2015,25(01):212-215.
点击复制

 服装布料自动铺展过程中的疵点检测与定位()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年01期
页码:
212-215
栏目:
应用开发研究
出版日期:
2015-01-10

文章信息/Info

Title:
 Defect Detection and Location in Process of Clothing Fabric Automatic Spreading
文章编号:
1673-629X(2015)01-0212-04
作者:
 尚会超[1]李飞飞[1]张洪斌[2]崔陆军[1]
 1.中原工学院 机电学院;2.河南新亚服装有限公司
Author(s):
 SHANG Hui-chao[1]LI Fei-fei[1]ZHANG Hong-bin[2] CUI Lu-jun[1]
关键词:
 服装加工自动铺布机疵点检测与定位
Keywords:
 garment processingautomatic spreadersdefect detection and location
分类号:
TP39
文献标志码:
A
摘要:
 在服装布料自动铺展过程中,对布匹疵点的在线检测定位是保证后续样片裁剪质量和服装加工质量的重要环节。依据自动铺布的过程和检测要求,通过一系列对比实验,总结出自动铺布过程中各种疵点检测定位处理方式的特点,得出以中值滤波、全局自适应阈值分割和形态学滤波处理相结合的方式能快速、准确检测和定位布匹疵点。实验结果表明,在自动铺布检测过程中使用该算法能够对布匹疵点进行准确定位,花费时间较短,节约劳动力,降低疵点检测成本,并能为后续的裁剪工序提供疵点定位的准确信息。
Abstract:
 In the process of clothing fabric automatic spreading,realizing online detection and location of fabric defects is an important link to ensure the follow-up sample cutting quality and garment processing quality. Based on the process and requirements of automatic spreading,through a series of comparative experiments,sum up the characteristics of various defect detection and location in the process of automatic spreading,and find that the method combined the median filtering,global adaptive threshold segmentation and morphological filtering processing can fast,accurately detect and position the fabric defects. The experimental results show that,using this algorithm can accurately locate in fabric defects automatic spreading detection process,taking less time,saving labor,reducing the detection cost,and provide the accurate defect positioning information for subsequent work.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(01):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(01):47.

更新日期/Last Update: 2015-04-28