[1]成希[][],荆晓远[],姚永芳[],等. 核化正交平衡类鉴别分析[J].计算机技术与发展,2015,25(01):133-136.
 CHENG Xi[][],JING Xiao-yuan[],YAO Yong-fang[],et al. Kernel Orthogonal Class-balanced Discriminant Analysis[J].,2015,25(01):133-136.
点击复制

 核化正交平衡类鉴别分析()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年01期
页码:
133-136
栏目:
智能、算法、系统工程
出版日期:
2015-01-10

文章信息/Info

Title:
 Kernel Orthogonal Class-balanced Discriminant Analysis
文章编号:
1673-629X(2015)01-0133-04
作者:
 成希[1][2] 荆晓远[1] 姚永芳[1] 李敏[1]
,1.南京邮电大学 自动化学院;2.南京邮电大学 计算机学院
Author(s):
 CHENG Xi[1][2] JING Xiao-yuan[1] YAO Yong-fang[1] LI Min[2]
关键词:
 类不平衡鉴别特征核方法
Keywords:
 class-imbalance learningdiscriminant featureskernel methods
分类号:
O235
文献标志码:
A
摘要:
 现实生活中数据的分布往往是非线性且不平衡的,传统的线性鉴别方法已经很难提取有效的鉴别信息,于是文中将算法扩展到核空间,提出了基于欠采样技术的核化正交平衡类鉴别分析( KOCBD)的方法。该方法在非线性空间中使用核映射,令少样本类为特定类,在剩余样本中构建其近邻样本集,并重新进行平衡类划分,然后提取鉴别特征。为了得到更具鉴别力的特征,进一步去除特征间的冗余信息,文中为相关性大的类之间所获得的鉴别向量加上正交约束。在Coil 20和USPS数据库上的实验结果表明,KOCBD方法能够有效地解决非线性空间的类不平衡问题,识别效果有一定程度的提高。
Abstract:
 In the real world,the distribution of the data is usually nonlinear and uneven. Under this circumstance,it is difficult to extract valid discriminant information by using those traditional discriminant approaches. To solve this problem,propose an approach named Ker-nel Orthogonal Class Balanced Discrimination ( KOCBD) . KOCBD maps the class-imbalanced sample set into kernel space. Then,for a specific class which has fewer samples,KOCBD establishes a nearest sample set in the remaining samples,and then redivides them into some even subsets. At last,KOCBD imposes orthogonal constraint on the extracted discriminant vectors among those high correlated clas-ses to remove redundant information. The experimental results on the Coil 20 and USPS databases demonstrate that the KOCBD approach can effectively solve the class-imbalance problem in nonlinear subspace,and achieve better recognition performance.

相似文献/References:

[1]黄明晓,荆晓远,李敏,等.基于主动学习的平衡类鉴别分析[J].计算机技术与发展,2014,24(06):95.
 HUANG Ming-xiao,JING Xiao-yuan,LI Min,et al.Class-balanced Discriminant Analysis Based on Active Learning[J].,2014,24(01):95.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(01):43.

更新日期/Last Update: 2015-04-17