[1]贲敏,邓萍,王保云. 基于l1/2正则化的稀疏表示目标跟踪算法的研究[J].计算机技术与发展,2015,25(01):82-86.
 BEN Min,DENG Ping,WANG Bao-yun. Research on Object Tracking Algorithm of Sparse Representation Based on l1/2 Normalization[J].,2015,25(01):82-86.
点击复制

 基于l1/2正则化的稀疏表示目标跟踪算法的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年01期
页码:
82-86
栏目:
智能、算法、系统工程
出版日期:
2015-01-10

文章信息/Info

Title:
 Research on Object Tracking Algorithm of Sparse Representation Based on l1/2 Normalization
文章编号:
1673-629X(2015)01-0082-05
作者:
 贲敏邓萍王保云
 南京邮电大学 自动化学院
Author(s):
 BEN MinDENG PingWANG Bao-yun
关键词:
 视频跟踪稀疏表示 过完备字典l1/2最小化分类器
Keywords:
 video trackingsparse representationover-complete dictionaryl1/2-norm minimizationclassifier
分类号:
TP301.6
文献标志码:
A
摘要:
 近年来目标的稀疏表示已经广泛应用到视频跟踪中。文中提出了一种基于局部稀疏表示的鲁棒目标跟踪算法,目标的表示将局部信息考虑在内,并且做出了遮挡处理。为了在新的帧中跟踪到目标,每一个候选目标通过在线构建的过完备字典以及模板解l1/2最小化问题稀疏表示。文中用l1/2规范最小化来代替l0,而不是用l1规范最小化,通过解l1/2最小化问题,可以找到比解l1最小化更稀疏、更精确的解。此外,l1/2比l0更容易求解。目标稀疏表示后,通过在线学习的分类器将目标区分出来。实验结果表明,与现有的一些算法相比,该算法稳定性好,性能更优越。
Abstract:
 Recently sparse representation has been widely used in video tracking. In this paper,propose a robust target tracking method based on local sparse representation,considering the local information for object representation and take occlusion into account. In order to track the target in a new frame,each target candidate is sparsely represented by over-complete dictionary online constructed and target templates solving a l1/2-norm minimization problem. In this algorithm,use l1/2-norm minimization to replace l0-norm minimization in-stead of l1-norm minimization. By solving l1/2-norm minimization,can find a sparser and more accurate solution than l1-norm minimi-zation,moreover,it is much easier to be solved than l0-norm minimization. After that,a classifier is learned to distinguish the target from the background. Experimental results show that this method has good stability and the performance is superior to the current algorithms.

相似文献/References:

[1]王冬华 吴壮志.边海防视频监控系统的设计与实现[J].计算机技术与发展,2008,(05):208.
 WANG Dong-hua,WU Zhuang-zhi.Design and Implementation of Sentry Video Surveillance System[J].,2008,(01):208.
[2]谢方方,杨文飞,韩月霞,等.基于 System Generator 的快速视频跟踪系统设计[J].计算机技术与发展,2013,(01):221.
 XIE Fang-fang,YANG Wen-fei,HAN Yue-xia,et al.Design of Quick Video Tracking System Based on System Generator[J].,2013,(01):221.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.
[11]张华伟[],阮进勇[][],丁广太[]. 万向椭圆描述的Mean-Shift算法[J].计算机技术与发展,2015,25(01):11.
 ZHANG Hua-wei[],NGUYEN Tien-dung][],DING Guang-tai[]. Mean-Shift Algorithm Described by Irregular Ellipse[J].,2015,25(01):11.

更新日期/Last Update: 2015-04-17