[1]刘有科[],高珏[],谭松[],等. 一种基于CUDA的快速宽视频拼接的方法[J].计算机技术与发展,2015,25(01):15-18.
 LIU You-ke[],GAO Jue[],TAN Song[],et al. A Fast Wide Video Stitching Method Based on CUDA[J].,2015,25(01):15-18.
点击复制

 一种基于CUDA的快速宽视频拼接的方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年01期
页码:
15-18
栏目:
智能、算法、系统工程
出版日期:
2015-01-10

文章信息/Info

Title:
 A Fast Wide Video Stitching Method Based on CUDA
文章编号:
1673-629X(2015)01-0015-04
作者:
 刘有科[1] 高珏[2] 谭松[1] 许华虎[3]
 1.上海大学 计算机工程与科学学院;2.上海大学 计算中心;3.上海上大海润信息系统有限公司
Author(s):
 LIU You-ke[1] GAO Jue[2] TAN Song[1] XU Hua-hu[3]
关键词:
 SURF多分辨率融合视频插帧CUDA 视频拼接
Keywords:
 SURFmulti-resolution fusionvideo interpolationCUDAvideo stitching
分类号:
TP301
文献标志码:
A
摘要:
 在视频拼接过程中,需要进行大量的图像处理计算,高复杂度的拼接算法很难满足实时性要求。因此,为了实现多视频源快速拼接,不仅要求拼接算法具有较强的鲁棒性,同时还需要具有较低的复杂度。文中提出了一种新的快速宽视频拼接方法,此方法首先利用SURF算子提取图像特征点并进行匹配,接着使用多分辨率融合算法进行全景图融合,然后利用基于路径的方法结合光流实现低复杂度的视频插帧,同时整个宽视频拼接过程使用CUDA进行并行加速,最后用一个双目拼接系统对文中提出的方法进行可行性验证。
Abstract:
 In the process of video stitching,high complexity algorithm can’t use to real-time video stitching since most image process contains mass of computing. In order to achieve real-time stitching,the stitching algorithm must have strong robustness and lower com-plexity. In this paper,propose a new method about fasting-video stitching. First,it extracts and matches the image feature points by using SURF,and blends the panorama image by using multi-resolution fusion algorithm. Then achieve a low complex video interpolation by combining the base-path with optical flow. Meanwhile it accelerates the whole process by using CUDA. At last,a binocular stitching sys-tem is introduced to verify the whole process’s feasibility.

相似文献/References:

[1]闵华清 黄欣欣 罗荣华.基于激光和视觉信息的机器人目标跟踪方法[J].计算机技术与发展,2010,(04):113.
 MIN Hua-qing,HUANG Xin-xin,LUO Rong-hua.Robot Target Tracking Approach Based on Laser and Vision Information[J].,2010,(01):113.
[2]杨云涛 冯莹 曹毓 陈运锦.基于SURF的序列图像快速拼接方法[J].计算机技术与发展,2011,(03):6.
 YANG Yun-tao,FENG Ying,CAO Yu,et al.Fast Method for Image Sequences Mosaic Based on SURF[J].,2011,(01):6.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.
[11]雷飞,王文学,王雪丽,等. 基于改进SURF的实时视频拼接方法[J].计算机技术与发展,2015,25(03):32.
 LEI Fei,WANG Wen-xue,WANG Xue-li,et al. Real-time Video Stitching Method Based on Improved SURF[J].,2015,25(01):32.
[12]武频[],王庆[],朱永华[],等. 一种改进的基于SURF的视频帧间匹配方法[J].计算机技术与发展,2017,27(02):20.
 WU Pin[],WANG Qing[],ZHU Yong-hua[],et al. An Improved Matching Method in Video Frames Based on SURF[J].,2017,27(01):20.

更新日期/Last Update: 2015-04-17