[1]廖荣华,兰时勇,刘正熙. 基于混沌时间序列局域法的短时交通流预测[J].计算机技术与发展,2015,25(01):1-5.
 LIAO Rong-hua,LAN Shi-yong,LIU Zheng-xi. Short-term Traffic Flow Forecasting Based on Local Prediction Method in Chaotic Time Series[J].,2015,25(01):1-5.
点击复制

 基于混沌时间序列局域法的短时交通流预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年01期
页码:
1-5
栏目:
智能、算法、系统工程
出版日期:
2015-01-10

文章信息/Info

Title:
 Short-term Traffic Flow Forecasting Based on Local Prediction Method in Chaotic Time Series
文章编号:
1673-629X(2015)01-0001-05
作者:
 廖荣华兰时勇刘正熙
 四川大学 计算机学院;四川大学 视觉合成重点学科实验室
Author(s):
 LIAO Rong-huaLAN Shi-yongLIU Zheng-xi
关键词:
 交通流预测混沌时间序列邻近点加权零阶局域法加权一阶局域法
Keywords:
 traffic flow forecastingchaotic time seriesneighbor pointadding-weight zero-rank local-region methodadding-weight one-rank local-region method
分类号:
TP391
文献标志码:
A
摘要:
 为提高城市短时交通流预测精度,将混沌时间序列分析应用于城市短时交通流数据,研究混沌时间序列局域预测法中的加权零阶局域法和加权一阶局域法。针对局域预测法在选取邻近相点时采用的欧氏距离和向量夹角两种方法只能片面反映邻近点的特点的问题,提出一种改进邻近相点选取的方法,综合相点相似程度和相点距离来选取邻近相点。再将原有方法和改进后的方法应用于北京市短时交通流预测中。结果表明,混沌时间序列局域法能适用于短时交通流预测,并且改进后的方法比原有方法具有更高的预测精度。
Abstract:
 To improve the accuracy of urban short-term traffic flow forecasting,the chaotic time series analysis is applied to urban short-term traffic flow data,study the two local chaotic time series prediction,including adding-weight zero-rank local-region method and adding-weight one-rank local-region method. Euclidean distance method and vector angle method used in selecting neighbor points in local prediction method are being researched,and these two methods can not reflect the overall characteristics of the neighbor points,in view of this problem,an improved neighboring phase point selection method which integrated relative degree of similarity and distance to select neighbor phase points is presented. Then the old methods and the improved method are used in the Beijing short-term traffic flow prediction. The results show that local prediction method in chaotic time series can be used in short-term traffic flow forecasting,and the improved method has higher accuracy in prediction than the old methods.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(01):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(01):47.
[11]杨济瑞,赵海涛,刘南杰. 改进的三次指数平滑法及其在车联网中的应用[J].计算机技术与发展,2016,26(11):164.
 YANG Ji-rui,ZHAO Hai-tao,LIU Nan-jie. Modified Cubic Exponential Smoothing Algorithm and Its Application on IoV[J].,2016,26(01):164.
[12]成云,成孝刚,谈苗苗,等. 基于ARIMA和小波神经网络组合模型的交通流预测[J].计算机技术与发展,2017,27(01):169.
 CHENG Yun,CHENG Xiao-gang,TAN Miao-miao,et al. Traffic Flow Prediction Based on Hybrid Model of ARIMA and WNN[J].,2017,27(01):169.

更新日期/Last Update: 2015-04-16